MIXTURES OF FACTOR ANALYZERS AND DEEP MIXTURES OF FACTOR ANALYZERS DIMENSIONALITY REDUCTION ALGORITHMS FOR HYPERSPECTRAL IMAGES CLASSIFICATION

被引:0
|
作者
Zhao, Bin [1 ]
Ulfarsson, Magnus O. [1 ]
Sveinsson, Johannes R. [1 ]
Chanussot, Jocelyn [1 ,2 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, Reykjavik, Iceland
[2] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
Dimensionality reduction; hyperspectral image; factor analysis; mixtures of factor analyzers; deep mixture of factor analyzers; classification;
D O I
10.1109/igarss.2019.8898002
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents two dimensionality reduction methods, mixtures of factor analyzers (MFA) and deep mixtures of factor analyzers (DMFA), for classification of hyperspectral image (HSI). DMFA consists of two layers of MFA and can extract more information from HSI than MFA can. The performance of MFA and DMFA dimensionality reduction methods for classification using real HSI is evaluated in this paper. Experimental results are compared to conventional methods like probabilistic principal component analysis and factor analysis and it is shown that MFA and DMFA give better results.
引用
收藏
页码:891 / 894
页数:4
相关论文
共 50 条
  • [1] (SEMI-) SUPERVISED MIXTURES OF FACTOR ANALYZERS AND DEEP MIXTURES OF FACTOR ANALYZERS DIMENSIONALITY REDUCTION ALGORITHMS FOR HYPERSPECTRAL IMAGES CLASSIFICATION
    Zhao, Bin
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    Chanussot, Jocelyn
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 887 - 890
  • [2] HYPERSPECTRAL IMAGES DENOISING BASED ON MIXTURES OF FACTOR ANALYZERS
    Zhao, Bin
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    Chanussot, Jocelyn
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1516 - 1519
  • [3] Unsupervised and Supervised Feature Extraction Methods for Hyperspectral Images Based on Mixtures of Factor Analyzers
    Zhao, Bin
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Chanussot, Jocelyn
    REMOTE SENSING, 2020, 12 (07)
  • [4] Semi-Supervised Mixtures of Factor Analyzers Feature Extraction for Hyperspectral Images
    Zhao, Bin
    Sveinsson, Johannes R.
    Ulfarsson, Magnus O.
    Chanussot, Jocelyn
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Mixtures of factor analyzers:: an extension with covariates
    Fokoué, E
    JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (02) : 370 - 384
  • [6] Deep Mixtures of Factor Analyzers with Common Loadings: A Novel Deep Generative Approach to Clustering
    Yang, Xi
    Huang, Kaizhu
    Zhang, Rui
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 709 - 719
  • [7] Mixtures of skew-t factor analyzers
    Murray, Paula M.
    Browne, Ryan P.
    McNicholas, Paul D.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 326 - 335
  • [8] Mixtures of Hidden Truncation Hyperbolic Factor Analyzers
    Murray, Paula M.
    Browne, Ryan P.
    McNicholas, Paul D.
    JOURNAL OF CLASSIFICATION, 2020, 37 (02) : 366 - 379
  • [9] Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions
    Lee, Sharon X.
    Lin, Tsung-, I
    McLachlan, Geoffrey J.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (02) : 481 - 512
  • [10] Mixtures of factor analyzers with scale mixtures of fundamental skew normal distributions
    Sharon X. Lee
    Tsung-I Lin
    Geoffrey J. McLachlan
    Advances in Data Analysis and Classification, 2021, 15 : 481 - 512