TROPOMI observations allow for robust exploration of the relationship between solar-induced chlorophyll fluorescence and terrestrial gross primary production

被引:69
|
作者
Li, Xing [1 ,2 ]
Xiao, Jingfeng [1 ]
机构
[1] Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA
[2] Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul, South Korea
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Carbon cycle; Sun-induced fluorescence; Gross primary productivity; Eddy covariance; Photosynthesis; Photosynthetic pathway; Water stress; Spatial and temporal integration; Climate change; AmeriFlux; PHOTOSYNTHESIS; ASSIMILATION; RETRIEVAL; SPACE;
D O I
10.1016/j.rse.2021.112748
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar-induced chlorophyll fluorescence (SIF) observed by satellites has advanced the monitoring of terrestrial photosynthesis regionally and globally. The relationship between SIF and gross primary production (GPP) at leaf, canopy, and ecosystem scales has received tremendous attention in recent years. It remains controversial whether the SIF-GPP relationship at the ecosystem scale is universal or dependent upon vegetation type. New SIF observations from the TROPOspheric Monitoring Instrument (TROPOMI) with unprecedented high spatial and temporal resolution provide a new opportunity to elucidate the SIF-GPP relationship. Here, we examine the SIF-GPP relationship for seven major vegetation types across the U.S. with TROPOMI SIF and in-situ GPP data for 83 eddy covariance flux sites. We find that TROPOMI SIF shows a strong and consistent relationship with tower based GPP at both satellite footprint and grid-cell levels. The slope of the SIF-GPP relationship is similar among all the vegetation types except croplands, demonstrating a nearly universal (converging to similar to 13.5 g C m(-2) d(-1)/W m(-2) mu m(-1) sr(-1)) rather than vegetation type-specific SIF-GPP relationship. This confirms that TROPOMI SIF can be used as a proxy for GPP across a wide variety of vegetation types, and can also be used to quantify GPP by avoiding uncertainty associated with land cover maps. The C-4 crops have a much higher slope than the C-3 crops, and therefore croplands tend to have a higher slope than C-3-dominated vegetation types (e.g., forests, shrublands, savannas). We also find that the TROPOMI SIF is well correlated with GPP under normal or wetter conditions, while their relationship becomes weaker under water stress. Our TROPOMI-based study could improve our understanding of the SIF-GPP relationship at the ecosystem scale and advance the mapping of GPP globally with SIF observations from space.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Global Analysis of the Relationship between Reconstructed Solar-Induced Chlorophyll Fluorescence (SIF) and Gross Primary Production (GPP)
    Gao, Haiqiang
    Liu, Shuguang
    Lu, Weizhi
    Smith, Andrew R.
    Valbuena, Ruben
    Yan, Wende
    Wang, Zhao
    Li Xiao
    Peng, Xi
    Li, Qinyuan
    Feng, Yujun
    McDonald, Morag
    Pagella, Tim
    Liao, Juyang
    Wu, Zhenming
    Zhang, Gui
    REMOTE SENSING, 2021, 13 (14)
  • [2] Estimation of Global Terrestrial Gross Primary Productivity Based on Solar-induced Chlorophyll Fluorescence
    Yuan, Yanbin
    Zhang, Chengfang
    Huang, Peng
    Dong, Heng
    Yang, Jinghao
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (04): : 183 - 191
  • [3] Moisture availability mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from global-scale variations
    Chen, Anping
    Mao, Jiafu
    Ricciuto, Daniel
    Xiao, Jingfeng
    Frankenberg, Christian
    Li, Xing
    Thornton, Peter E.
    Gu, Lianhong
    Knapp, Alan K.
    GLOBAL CHANGE BIOLOGY, 2021, 27 (06) : 1144 - 1156
  • [4] First Investigation of the Relationship Between Solar-Induced Chlorophyll Fluorescence Observed by TanSat and Gross Primary Productivity
    Du, Shanshan
    Liu, Liangyun
    Liu, Xinjie
    Chen, Jidai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11892 - 11902
  • [5] Estimation of Gross Primary Productivity (GPP) of Global Terrestrial Vegetation Based on Solar-Induced Chlorophyll Fluorescence
    Huang, Yuefei
    Xia, Zhongshuai
    Song, Tianhua
    Zhang, Shuo
    Chen, Shiliu
    Yingyong Jichu yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering, 33 (01): : 87 - 102
  • [6] Global Retrievals of Solar-Induced Chlorophyll Fluorescence at Red Wavelengths With TROPOMI
    Kohler, Philipp
    Behrenfeld, Michael J.
    Landgraf, Jochen
    Joiner, Joanna
    Magney, Troy S.
    Frankenberg, Christian
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (15)
  • [7] Contrasting responses of relationship between solar-induced fluorescence and gross primary production to drought across aridity gradients
    Qiu, Ruonan
    Han, Ge
    Li, Xing
    Xiao, Jingfeng
    Liu, Jiangong
    Wang, Songhan
    Li, Siwei
    Gong, Wei
    REMOTE SENSING OF ENVIRONMENT, 2024, 302
  • [8] Physiological dynamics dominate the relationship between solar-induced chlorophyll fluorescence and gross primary productivity along the nitrogen gradient in cropland
    Xu, Enxiang
    Zhou, Lei
    Ding, Jianxi
    Zhao, Ning
    Zeng, Linhui
    Zhang, Guoping
    Chi, Yonggang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 929
  • [9] CO2 Concentration, A Critical Factor Influencing the Relationship between Solar-induced Chlorophyll Fluorescence and Gross Primary Productivity
    Qiu, Ruonan
    Han, Ge
    Ma, Xin
    Sha, Zongyao
    Shi, Tianqi
    Xu, Hao
    Zhang, Miao
    REMOTE SENSING, 2020, 12 (09)
  • [10] Solar-induced chlorophyll fluorescence exhibits a universal relationship with gross primary productivity across a wide variety of biomes
    Xiao, Jingfeng
    Li, Xing
    He, Binbin
    Arain, M. Altaf
    Beringer, Jason
    Desai, Ankur R.
    Emmel, Carmen
    Hollinger, David Y.
    Krasnova, Alisa
    Mammarella, Ivan
    Noe, Steffen M.
    Ortiz, Penelope Serrano
    Rey-Sanchez, Camilo
    Rocha, Adrian V.
    Varlagin, Andrej
    GLOBAL CHANGE BIOLOGY, 2019, 25 (04) : E4 - E6