Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode

被引:38
作者
Park, Sangjin [1 ]
Ryu, Ji Heon [1 ]
Oh, Seung M. [1 ]
机构
[1] Seoul Natl Univ, Coll Engn, Dept Chem & Biol Engn, WCU Program C2E2, Seoul 151744, South Korea
关键词
LITHIUM-ION-BATTERIES; LI-ION; ELECTROCHEMICAL PERFORMANCE; ANODE MATERIALS; ALLOY ANODES; INTERFACE; GRAPHITE; CELLS; INTERMETALLICS; XPS;
D O I
10.1149/1.3561424
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The passivating ability of surface film derived from vinylene carbonate (VC) is addressed on tin (Sn) negative electrode after a comparative study on the thickness, film growth pattern, chemical composition, and mechanical flexibility of the surface films generated from VC-free and VC-added electrolytes. The surface film derived from the former electrolyte is enriched by inorganic fluorinated and carbonate species, and shows a poor passivating ability to cause a continued electrolyte decomposition, film growth and eventual electrode failure. In contrast, organic carbon-oxygen species are dominant in the film derived from the VC-added electrolyte. Even if this film is thinner than the other, it passivates the Sn electrode surface more effectively. As a result, the film growth and electrode polarization are less significant. The superior passivating ability of organic-rich surface film has been ascribed to a uniform coverage and higher mechanical flexibility. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3561424] All rights reserved.
引用
收藏
页码:A498 / A503
页数:6
相关论文
共 32 条
[1]   The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes [J].
Andersson, AM ;
Herstedt, M ;
Bishop, AG ;
Edström, K .
ELECTROCHIMICA ACTA, 2002, 47 (12) :1885-1898
[2]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[3]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[4]   Anomalous, high-voltage irreversible capacity in tin electrodes for lithium batteries [J].
Beattie, SD ;
Hatchard, T ;
Bonakdarpour, A ;
Hewitt, KC ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A701-A705
[5]   Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J].
Besenhard, JO ;
Yang, J ;
Winter, M .
JOURNAL OF POWER SOURCES, 1997, 68 (01) :87-90
[6]   How dynamic is the SEI? [J].
Bryngelsson, H. ;
Stjerndahl, M. ;
Gustafsson, T. ;
Edstrom, K. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :970-975
[7]   A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy [J].
Chao, Sung-Chieh ;
Yen, Yu-Chan ;
Song, Yen-Fang ;
Chen, Yi-Ming ;
Wu, Hung-Chun ;
Wu, Nae-Lih .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) :234-237
[8]   Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries [J].
Chen, Libao ;
Wang, Ke ;
Xie, Xiaohua ;
Xie, Jingying .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :538-543
[9]   Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive [J].
Chen, Libao ;
Wang, Ke ;
Xie, Xiaohua ;
Xie, Jingying .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (11) :A512-A515
[10]   On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium [J].
Courtney, IA ;
McKinnon, WR ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) :59-68