Rapid Mixing of Subset Glauber Dynamics on Graphs of Bounded Tree-Width

被引:0
作者
Bordewich, Magnus [1 ]
Kang, Ross J. [1 ]
机构
[1] Univ Durham, Durham, England
来源
AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP, PT I | 2011年 / 6755卷
基金
英国工程与自然科学研究理事会;
关键词
Markov chain Monte Carlo; graph polynomials; subset expansion; tree-width; canonical paths; randomised approximation schemes; rapid mixing; MARKOV-CHAINS; TIME; POLYNOMIALS; INVARIANTS; MODELS; NUMBER;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Motivated by the 'subgraphs world' view of the ferromagnetic Ising model, we develop a general approach to studying mixing times of Glauber dynamics based on subset expansion expressions for a class of graph polynomials. With a canonical paths argument, we demonstrate that the chains defined within this framework mix rapidly upon graphs of bounded tree-width. This extends known results on rapid mixing for the Tutte polynomial, the adjacency-rank (R-2-)polynomial and the interlace polynomial.
引用
收藏
页码:533 / 544
页数:12
相关论文
共 46 条
[41]   Rapid Mixing of Glauber Dynamics up to Uniqueness via Contraction [J].
Chen, Zongchen ;
Liu, Kuikui ;
Vigoda, Eric .
2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, :1307-1318
[42]   RAPID MIXING OF GLAUBER DYNAMICS UP TO UNIQUENESS VIA CONTRACTION [J].
Chen, Zongchen ;
Liu, Kuikui ;
Vigoda, Eric .
SIAM JOURNAL ON COMPUTING, 2023, 52 (01) :196-237
[43]   On the OBDD size for graphs of bounded tree- and clique-width [J].
Meer, Klaus ;
Rautenbach, Dieter .
DISCRETE MATHEMATICS, 2009, 309 (04) :843-851
[44]   Chordal bipartite graphs of bounded tree- and clique-width [J].
Lozin, V ;
Rautenbach, D .
DISCRETE MATHEMATICS, 2004, 283 (1-3) :151-158
[45]   Node Multiway Cut and Subset Feedback Vertex Set on Graphs of Bounded Mim-Width [J].
Bergougnoux, Benjamin ;
Papadopoulos, Charis ;
Telle, Jan Arne .
ALGORITHMICA, 2022, 84 (05) :1385-1417
[46]   On the band-, tree-, and clique-width of graphs with bounded vertex degree [J].
Lozin, V ;
Rautenbach, D .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) :195-206