Empirical Analysis of Bitcoin Market Volatility using Supervised Learning Approach

被引:0
作者
Singh, Hrishikesh [1 ]
Agarwal, Parul [1 ]
机构
[1] Jaypee Inst Informat Technol, Dept Comp Sci, Noida 201309, India
来源
2018 ELEVENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3) | 2018年
关键词
Bitcoin; Machine learning; Cryptocurrency;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Crypto currencies are considered as the next model of economics and monetary exchange. In recent years, popular cryptocurrency such as Bitcoin and Ethereum witness an exponential growth in economic sphere. In this paper empirical testing of four conventional machine learning methods is performed to predict the bitcoin prices using last eight years of transactional data. Linear and polynomial regression is implemented using all the features individually. Polynomial regression, Support Vector regression and KNN regression are hyper tuned with grid search logic. Results depicted that KNN regression outperformed others models in attaining mean square error of 0.00021.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 2016, THESIS
[2]  
[Anonymous], 2012, INTRO LINEAR REGRESS
[3]  
[Anonymous], COMM CONTR COMP ALL
[4]  
Awad M, 2015, Neural Inf. Process. -Lett. Rev, P67, DOI [10.1007/978-1-4302-5990-9/TNQDotTNQ/4, DOI 10.1007/978-1-4302-5990-9_4, 10.1007/978-1-4302-5990-94]
[5]  
Benesty J, 2009, SPRINGER TOP SIGN PR, V2, P37, DOI 10.1007/978-3-642-00296-0_5
[6]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[7]  
Cameron AC, 1997, J ECONOMETRICS, V77, P329
[8]  
DUDANI SA, 1976, IEEE T SYST MAN CYB, V6, P327
[9]   Bayesian lasso regression [J].
Hans, Chris .
BIOMETRIKA, 2009, 96 (04) :835-845
[10]  
Karame G. O., 2012, P 2012 ACM C COMP CO, P906, DOI DOI 10.1145/2382196.2382292