On (-1,1)-Matrices of Skew Type with the Maximal Determinant and Tournaments

被引:5
作者
Andres Armario, Jose [1 ]
机构
[1] Univ Seville, Dept Appl Math 1, Seville, Spain
来源
ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM | 2015年 / 133卷
关键词
Tournaments; Maximal; determinants; Skew (-1,1)-matrices;
D O I
10.1007/978-3-319-17729-8_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Skew Hadamard matrices of order n give the solution to the question of finding the largest possible n by n determinant with entries +/- 1 of skew type when n equivalent to 0 (mod 4). Characterizations of skew Hadamard matrices in terms of tournaments are well-known. For n equivalent to 2 (mod 4), we give a characterization of (-1, 1)-matrices of skew type of order n where their determinants reach Ehlich-Wojtas' bound in terms of tournaments.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 8 条
[1]  
[Anonymous], 1964, Mathematische Zeitschrift, DOI DOI 10.1007/BF01111249
[2]  
Armario J.A., 2014, UPPER BOUND MAXIMAL
[3]   ALGEBRAIC MULTIPLICITY OF THE EIGENVALUES OF A TOURNAMENT MATRIX [J].
DECAEN, D ;
GREGORY, DA ;
KIRKLAND, SJ ;
PULLMAN, NJ ;
MAYBEE, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 169 :179-193
[4]  
Kharaghani H, 2006, CRC HDB COMBINATORIA, P296
[5]   A characterization of skew Hadamard matrices and doubly regular tournaments [J].
Nozaki, Hiroshi ;
Suda, Sho .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (03) :1050-1056
[6]  
ORRICK WP, 2005, HADAMARD MAXIMAL DET
[7]  
Reid K.B., 1972, J. Comb. Theory, Ser. A, V12, P332, DOI DOI 10.1016/0097-3165(72)90098-2
[8]  
Wojtas M., 1964, COLLOQ MATH-WARSAW, V12, P73