A glutamic acid decarboxylase (CgGAD) highly expressed in hemocytes of Pacific oyster Crassostrea gigas

被引:21
|
作者
Li, Meijia [1 ,3 ]
Wang, Lingling [2 ]
Qiu, Limei [1 ]
Wang, Weilin [1 ,3 ]
Xin, Lusheng [1 ,3 ]
Xu, Jiachao [1 ,3 ]
Wang, Hao [1 ]
Song, Linsheng [2 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China
[2] Dalian Ocean Univ, Minist Agr, Key Lab Mariculture & Stock Enhancement North Chi, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY | 2016年 / 63卷
基金
美国国家科学基金会;
关键词
Crassostrea gigas; GABA synthase; Immune response; Hemocyte specific; GABAERGIC NERVOUS-SYSTEM; INHIBITORY ROLE; GABA; IMMUNE; IMMUNOMODULATION; HETEROGENEITY; BALANCE; DISEASE; CELLS; GENE;
D O I
10.1016/j.dci.2016.05.010
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Glutamic acid decarboxylase (GAD), a rate-limiting enzyme to catalyze the reaction converting the excitatory neurotransmitter glutamate to inhibitory neurotransmitter gamma-aminobutyric acid (GABA), not only functions in nervous system, but also plays important roles in immunomodulation in vertebrates. However, GAD has rarely been reported in invertebrates, and never in molluscs. In the present study, one GAD homologue (designed as CgGAD) was identified from Pacific oyster Crassostrea gigas. The full length cDNA of CgGAD was 1689 bp encoding a polypeptide of 562 amino acids containing a conserved pyridoxal-dependent decarboxylase domain. CgGAD mRNA and protein could be detected in ganglion and hemocytes of oysters, and their abundance in hemocytes was unexpectedly much higher than those in ganglion. More importantly, CgGAD was mostly located in those granulocytes without phagocytic capacity in oysters, and could dynamically respond to LPS stimulation. Further, after being transfected into HEK293 cells, CgGAD could promote the production of GABA. Collectively, these findings suggested that CgGAD, as a GABA synthase and molecular marker of GABAergic system, was mainly distributed in hemocytes and ganglion and involved in neuroendocrine-immune regulation network in oysters, which also provided a novel insight to the co-evolution between nervous system and immune system. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 50 条
  • [31] Heterosis for yield and crossbreeding of the Pacific oyster Crassostrea gigas
    Hedgecock, Dennis
    Davis, Jonathan P.
    AQUACULTURE, 2007, 272 : S17 - S29
  • [32] Sources of dietary cadmium to the Pacific oyster Crassostrea gigas
    Christie, J. C.
    Bendell, L. I.
    MARINE ENVIRONMENTAL RESEARCH, 2009, 68 (03) : 97 - 105
  • [33] Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas
    Kai Song
    Shiyong Wen
    Guofan Zhang
    Marine Biotechnology, 2019, 21 : 614 - 622
  • [34] Sterol metabolism of Pacific oyster (Crassostrea gigas) spat
    Knauer, J
    Kerr, RG
    Lindley, D
    Southgate, PC
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1998, 119 (01): : 81 - 84
  • [35] Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia
    Wrange, Anna-Lisa
    Valero, Johanna
    Harkestad, Lisbeth S.
    Strand, Oivind
    Lindegarth, Susanne
    Christensen, Helle Torp
    Dolmer, Per
    Kristensen, Per Sand
    Mortensen, Stein
    BIOLOGICAL INVASIONS, 2010, 12 (05) : 1145 - 1152
  • [36] CONSTRUCTION OF A CYTOGENETIC MAP FOR THE PACIFIC OYSTER (CRASSOSTREA GIGAS)
    Wang, Shan
    Gaffney, Patrick M.
    Hedgecock, Dennis
    Bao, Zhenmin
    Guo, Ximing
    JOURNAL OF SHELLFISH RESEARCH, 2011, 30 (02): : 561 - 561
  • [37] XENOBIOTIC BIOTRANSFORMATION IN THE PACIFIC OYSTER (CRASSOSTREA-GIGAS)
    SCHLENK, D
    BUHLER, DR
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-PHARMACOLOGY TOXICOLOGY & ENDOCRINOLOGY, 1989, 94 (02): : 469 - 475
  • [38] Heritability of shell pigmentation in the Pacific oyster, Crassostrea gigas
    Evans, Sanford
    Camara, Mark D.
    Langdon, Christopher J.
    AQUACULTURE, 2009, 286 (3-4) : 211 - 216
  • [39] Selection for desirable traits in the Pacific oyster Crassostrea gigas
    Langdon, Chris
    Barton, Alan
    Erans, Ford
    JOURNAL OF SHELLFISH RESEARCH, 2008, 27 (04): : 1023 - 1023
  • [40] Gamete quality in triploid Pacific oyster (Crassostrea gigas)
    Suquet, Marc
    Malo, Florent
    Quere, Claudie
    Leduc, Christophe
    Le Grand, Jacqueline
    Benabdelmouna, Abdellah
    AQUACULTURE, 2016, 451 : 11 - 15