Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty

被引:186
作者
Sanyal, Jibonananda [1 ]
Zhang, Song [2 ]
Dyer, Jamie [3 ]
Mercer, Andrew [3 ,4 ]
Amburn, Philip [1 ]
Moorhead, Robert J. [1 ]
机构
[1] Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39762 USA
[2] Mississippi State Univ, Dept Comp Sci & Engn, Mississippi State, MS USA
[3] Mississippi State Univ, Dept Geosci, Mississippi State, MS USA
[4] Mississippi State Univ, No Gulf Inst, Mississippi State, MS USA
关键词
Uncertainty visualization; weather ensemble; geographic/geospatial visualization; glyph-based techniques; time-varying data; qualitative evaluation; 1993; SUPERSTORM; VERIFICATION;
D O I
10.1109/TVCG.2010.181
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Numerical weather prediction ensembles are routinely used for operational weather forecasting. The members of these ensembles are individual simulations with either slightly perturbed initial conditions or different model parameterizations, or occasionally both. Multi-member ensemble output is usually large, multivariate, and challenging to interpret interactively. Forecast meteorologists are interested in understanding the uncertainties associated with numerical weather prediction; specifically variability between the ensemble members. Currently, visualization of ensemble members is mostly accomplished through spaghetti plots of a single midtroposphere pressure surface height contour. In order to explore new uncertainty visualization methods, the Weather Research and Forecasting (WRF) model was used to create a 48-hour, 18 member parameterization ensemble of the 13 March 1993 "Superstorm". A tool was designed to interactively explore the ensemble uncertainty of three important weather variables: water-vapor mixing ratio, perturbation potential temperature, and perturbation pressure. Uncertainty was quantified using individual ensemble member standard deviation, inter-quartile range, and the width of the 95% confidence interval. Bootstrapping was employed to overcome the dependence on normality in the uncertainty metrics. A coordinated view of ribbon and glyph-based uncertainty visualization, spaghetti plots, iso-pressure colormaps, and data transect plots was provided to two meteorologists for expert evaluation. They found it useful in assessing uncertainty in the data, especially in finding outliers in the ensemble run and therefore avoiding the WRF parameterizations that lead to these outliers. Additionally, the meteorologists could identify spatial regions where the uncertainty was significantly high, allowing for identification of poorly simulated storm environments and physical interpretation of these model issues.
引用
收藏
页码:1421 / 1430
页数:10
相关论文
共 63 条
  • [1] [Anonymous], P WORKSH INT GEOSP I
  • [2] [Anonymous], P VIS DAT AN 2006
  • [3] [Anonymous], 1993, Guide to the Expression of Uncertainty in Measurement
  • [4] [Anonymous], 1995, GUID EXPR UNC MEAS
  • [5] [Anonymous], 1995, HOW MAPS WORK
  • [6] [Anonymous], 1992, Cartogr. Perspect, DOI DOI 10.14714/CP13.1000
  • [7] Arakawa A., 1977, Methods in Computational Physics: Advances in Research and Applications, P173, DOI [10.1016/B978-0-12-460817-7.50009-4, DOI 10.1016/B978-0-12-460817-7.50009-4]
  • [8] Bertin J., 1983, SEMIOLOGY GRAPHICS D
  • [9] Rainbow color map (still) considered harmful
    Borland, David
    Taylor, Russell M., II
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2007, 27 (02) : 14 - 17
  • [10] CAPLAN PM, 1995, B AM METEOROL SOC, V76, P201, DOI 10.1175/1520-0477(1995)076<0201:TMSPOT>2.0.CO