The impact of model approximation in multiparametric model predictive control

被引:13
作者
Katz, Justin [1 ,2 ]
Burnak, Baris [1 ,2 ]
Pistikopoulos, Efstratios N. [1 ,2 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Texas A&M Energy Inst, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Multiparametric programming; Model predictive control; Model validation; ORDER REDUCTION; MPC; SYSTEMS; DECOMPOSITION; OPTIMIZATION; NMPC;
D O I
10.1016/j.cherd.2018.09.034
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Incorporating a high fidelity model that accurately describes a dynamical system in a model predictive control study may often lead to an intractable formulation where the use of model approximation is required. This study examines system identification, time series modeling, and linearization in the context of multiparametric model predictive control with the use of key error metrics including: (i) a novel comparison of key features of the feasible space and objective function in the optimization formulation, (ii) integral time absolute error, (iii) error distribution analysis, and (iv) step response profiles. two examples are used as a basis for this study: a tank system which highlights the techniques used and a Continuously Stirred Tank Reactor (CSTR). (C) 2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 223
页数:13
相关论文
共 38 条
  • [1] Distributed Economic MPC with Safety-Based Constraints for Nonlinear Systems
    Albalawi, Fahad
    Durand, Helen
    Christofides, Panagiotis D.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 12033 - 12040
  • [2] [Anonymous], 1999, SYSTEM IDENTIFICATIO
  • [3] Frequency-dependent approach to model validation for iterative identification and control schemes
    Balaguer, P.
    Vilanova, R.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (01) : 98 - 109
  • [4] The explicit linear quadratic regulator for constrained systems
    Bemporad, A
    Morari, M
    Dua, V
    Pistikopoulos, EN
    [J]. AUTOMATICA, 2002, 38 (01) : 3 - 20
  • [5] Simultaneous Process Scheduling and Control: A Multiparametric Programming-Based Approach
    Burnak, Bans
    Katz, Justin
    Diangelakis, Nikolaos A.
    Pistikopoulos, Efstratios N.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (11) : 3963 - 3976
  • [6] Camacho EF, 2007, LECT NOTES CONTR INF, V358, P1
  • [7] Multi-Parametric Linear Programming Under Global Uncertainty
    Charitopoulos, Vassilis M.
    Papageorgiou, Lazaros G.
    Dua, Vivek
    [J]. AICHE JOURNAL, 2017, 63 (09) : 3871 - 3895
  • [8] Diangelakis N. A., 2017, AICHE J
  • [9] Carleman approximation based quasi-analytic model predictive control for nonlinear systems
    Fang, Yizhou
    Armaou, Antonios
    [J]. AICHE JOURNAL, 2016, 62 (11) : 3915 - 3929
  • [10] Nonlinear model predictive control using Hammerstein models
    Fruzzetti, KP
    Palazoglu, A
    McDonald, KA
    [J]. JOURNAL OF PROCESS CONTROL, 1997, 7 (01) : 31 - 41