Atomic Force Microscope-Based Meniscus-Confined Three-Dimensional Electrodeposition

被引:24
作者
Eliyahu, David [1 ]
Gileadi, Eliezer [2 ]
Galun, Ehud [3 ]
Eliaz, Noam [1 ]
机构
[1] Tel Aviv Univ, Dept Mat Sci & Engn, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Sch Chem, IL-6997801 Tel Aviv, Israel
[3] DDR&D IMOD, R&T Base Unit, Mat Div, IL-61909 Tel Aviv, Israel
关键词
atomic force microscope (AFM); copper; electrochemistry; meniscus-confined electrodeposition (MCED); three-dimensional (3D) printing; LOCALIZED ELECTROCHEMICAL DEPOSITION; TEMPERATURE GRAIN-GROWTH; ELECTRICAL-CONDUCTIVITY; COPPER; FABRICATION; MICROSTRUCTURES; SIZE; NANOSTRUCTURES; COLUMNS; PROBE;
D O I
10.1002/admt.201900827
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of a 3D electrochemical deposition system, which combines meniscus-confined electrodeposition (MCED) with atomic force microscope (AFM) closed-loop control and has a submicron resolution, is described. Thanks to the high rigidity of the hollow borosilicate glass (or quartz) tip and quartz crystal tuning fork (QTF), combined with the QTF's high force sensitivity, the use of a solution-filled AFM tip in air is successful. The AFM control enables full automation and in situ growth control. Using this scheme, 3D printing of high-quality, fully dense, uniform and exceptionally smooth, freestanding straight and overhang pure polycrystalline copper pillars, with diameters ranging from 1.5 mu m to 250 nm, and an aspect ratio > 100, is demonstrated. This process may be useful for manufacturing of high-frequency terahertz antennas, high-density interconnects, precision sensors, micro- and nano-electromechanical systems, batteries, and fuel cells, as well as for repair or modification of existing micro-sized or nano-sized features.
引用
收藏
页数:9
相关论文
共 64 条
[1]   Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures [J].
Abazari, Amir Musa ;
Safavi, Seyed Mohsen ;
Rezazadeh, Ghader ;
Villanueva, Luis Guillermo .
SENSORS, 2015, 15 (11) :28543-28562
[2]  
[Anonymous], 2012, E11212 ASTM
[3]  
[Anonymous], 2013, Handbook of Reference Electrodes, DOI DOI 10.1007/978-3-642-36188-3
[4]   Microscale 3D Printing of Nanotwinned Copper [J].
Behroozfar, Ali ;
Daryadel, Soheil ;
Morsali, S. Reza ;
Moreno, Salvador ;
Baniasadi, Mahmoud ;
Bernal, Rodrigo A. ;
Minary-Jolandan, Majid .
ADVANCED MATERIALS, 2018, 30 (04)
[5]   Finite Element Simulation of Localized Electrochemical Deposition for Maskless Electrochemical Additive Manufacturing [J].
Brant, Anne M. ;
Sundaram, Murali M. ;
Kamaraj, Abishek B. .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (01)
[6]   Two-step room temperature grain growth in electroplated copper [J].
Brongersma, SH ;
Richard, E ;
Vervoort, I ;
Bender, H ;
Vandervorst, W ;
Lagrange, S ;
Beyer, G ;
Maex, K .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (07) :3642-3645
[7]  
Chapman D., 2016, High Conductivity Copper for Electrical Engineering
[8]   EFAB: low-cost automated electrochemical batch fabrication of arbitrary 3-D microstructures [J].
Cohen, A ;
Frodis, U ;
Tseng, FG ;
Zhang, G ;
Mansfeld, F ;
Will, P .
MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY V, 1999, 3874 :236-247
[9]   EFAB: Rapid, low-cost desktop micromachining of high aspect ratio true 3-D MEMS [J].
Cohen, A ;
Zhang, G ;
Tseng, FG ;
Frodis, U ;
Mansfeld, F ;
Will, P .
MEMS '99: TWELFTH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 1999, :244-251
[10]  
Cohen A., 2005, CISC VIS NETW IND GL