Dissipative surface solitons in periodic structures

被引:32
作者
Kartashov, Y. V. [1 ,2 ]
Konotop, V. V. [3 ,4 ]
Vysloukh, V. A. [5 ]
机构
[1] ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Univ Politecn Cataluna, Castelldefels 08860, Barcelona, Spain
[3] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Dept Fis, P-1649003 Lisbon, Portugal
[5] Univ Americas Puebla, Dipartimento Matemat & Fis, Cholula 72820, Mexico
关键词
WAVE-GUIDE ARRAYS; OPTICAL LATTICES;
D O I
10.1209/0295-5075/91/34003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report dissipative surface solitons forming at the interface between a semi-infinite lattice and a homogeneous Kerr medium. The solitons exist due to the balance between amplification in the near-surface lattice channel and two-photon absorption. The stable dissipative surface solitons exist in both focusing and defocusing media, when propagation constants of corresponding states fall into a total semi-infinite or into one of total finite gaps of the spectrum (i.e. in a domain where propagation of linear waves is inhibited for the both media). In a general situation, the surface solitons form when the amplification coefficient exceeds the threshold value. When a soliton is formed in a total finite gap there exists also the upper limit for the linear gain. Copyright (c) EPLA, 2010
引用
收藏
页数:5
相关论文
共 26 条
[1]   Matter solitons in Bose-Einstein condensates with optical lattices [J].
Alfimov, GL ;
Konotop, VV ;
Salerno, M .
EUROPHYSICS LETTERS, 2002, 58 (01) :7-13
[2]   Surface modes and breathers in finite arrays of nonlinear waveguides [J].
Bludov, Yu. V. ;
Konotop, V. V. .
PHYSICAL REVIEW E, 2007, 76 (04)
[3]   Surface defect gap solitons [J].
Chen, W. H. ;
He, Y. J. ;
Wang, H. Z. .
OPTICS EXPRESS, 2006, 14 (23) :11271-11276
[4]  
Connelly M.J., 2002, SEMICONDUCTOR OPTICA
[5]   One-dimensional delocalizing transitions of matter waves in optical lattices [J].
Cruz, H. A. ;
Brazhnyi, V. A. ;
Konotop, V. V. ;
Salerno, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) :1372-1387
[6]   Two-dimensional discrete Ginzburg-Landau solitons [J].
Efremidis, Nikolaos K. ;
Christodoulides, Demetrios N. ;
Hizanidis, Kyriakos .
PHYSICAL REVIEW A, 2007, 76 (04)
[7]   Discrete Ginzburg-Landau solitons [J].
Efremidis, NK ;
Christodoulides, DN .
PHYSICAL REVIEW E, 2003, 67 (02) :5
[8]   Discrete spatial optical solitons in waveguide arrays [J].
Eisenberg, HS ;
Silberberg, Y ;
Morandotti, R ;
Boyd, AR ;
Aitchison, JS .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3383-3386
[9]   Soliton emission in amplifying lattice surfaces [J].
Kartashov, Yaroslav V. ;
Vysloukh, Victor A. ;
Torner, Lluis .
OPTICS LETTERS, 2007, 32 (14) :2061-2063
[10]   Soliton Shape and Mobility Control in Optical Lattices [J].
Kartashov, Yaroslav V. ;
Vysloukh, Victor A. ;
Torner, Lluis .
PROGRESS IN OPTICS, VOL 52, 2009, 52 :63-+