Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation

被引:130
作者
Zhou, Hui [1 ,3 ]
Chen, Zixuan [1 ]
Kountoupi, Evgenia [1 ]
Tsoukalou, Athanasia [1 ]
Abdala, Paula M. [1 ]
Florian, Pierre [2 ]
Fedorov, Alexey [1 ]
Mueller, Christoph R. [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
[2] Univ Orleans, CEMHTI UPR3079, CNRS, F-45071 Orleans, France
[3] Tsinghua Univ, Dept Energy & Power Engn, Beijing 100084, Peoples R China
基金
欧盟地平线“2020”;
关键词
GAS-SHIFT REACTION; MO2C; SELECTIVITY; REDUCTION; BETA-MO2C; EVOLUTION; NMR; SPECTROSCOPY; PERFORMANCE; ACTIVATION;
D O I
10.1038/s41467-021-25784-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early transitional metal carbides are promising catalysts for hydrogenation of CO2. Here, a two-dimensional (2D) multilayered 2D-Mo2C material is prepared from Mo2CTx of the MXene family. Surface termination groups T-x (O, OH, and F) are reductively de-functionalized in Mo2CTx (500 degrees C, pure H-2) avoiding the formation of a 3D carbide structure. CO2 hydrogenation studies show that the activity and product selectivity (CO, CH4, C-2-C-5 alkanes, methanol, and dimethyl ether) of Mo2CTx and 2D-Mo2C are controlled by the surface coverage of T-x groups that are tunable by the H-2 pretreatment conditions. 2D-Mo2C contains no T-x groups and outperforms Mo2CTx, beta-Mo2C, or the industrial Cu-ZnO-Al2O3 catalyst in CO2 hydrogenation (evaluated by CO weight time yield at 430 degrees C and 1 bar). We show that the lack of surface termination groups drives the selectivity and activity of Mo-terminated carbidic surfaces in CO2 hydrogenation. The development of robust and efficient catalysts for CO2 hydrogenation to value-added chemicals is an urgent task. Here the authors report two-dimensional carbide catalyst based on earth-abundant molybdenum that hydrogenates CO2 with high activity, stable performance and tunable selectivity.
引用
收藏
页数:10
相关论文
共 71 条
[1]   Supported Molybdenum Carbide and Nitride Catalysts for Carbon Dioxide Hydrogenation [J].
Abou Hamdan, Marwa ;
Nassereddine, Abdallah ;
Checa, Ruben ;
Jahjah, Mohamad ;
Pinel, Catherine ;
Piccolo, Laurent ;
Perret, Noemie .
FRONTIERS IN CHEMISTRY, 2020, 8
[2]  
Aresta M., 2013, Carbon dioxide recovery and utilization
[3]   95Mo NMR:: hyperfine interactions in MoO3, MoS2, MoSe2 Mo3Se4, MoSi2 and Mo2C [J].
Bastow, TJ .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 1998, 12 (04) :191-199
[4]   Pairwise Parahydrogen Addition Over Molybdenum Carbide Catalysts [J].
Burueva, Dudari B. ;
Smirnov, Andrey A. ;
Bulavchenko, Olga A. ;
Prosvirin, Igor P. ;
Gerasimov, Evgeny Yu ;
Yakovlev, Vadim A. ;
Kovtunov, Kirill V. ;
Koptyug, Igor V. .
TOPICS IN CATALYSIS, 2020, 63 (1-2) :2-11
[5]   First-order Raman scattering in three-layered Mo-based ternaries: MoAlB, Mo2Ga2C and Mo2GaC [J].
Chaix-Pluchery, O. ;
Thore, A. ;
Kota, S. ;
Halim, J. ;
Hu, C. ;
Rosen, J. ;
Ouisse, T. ;
Barsoum, M. W. .
JOURNAL OF RAMAN SPECTROSCOPY, 2017, 48 (05) :631-638
[6]   Mo2C Modification by CO2, H2O, and O2: Effects of Oxygen Content and Oxygen Source on Rates and Selectivity of m-Cresol Hydrodeoxygenation [J].
Chen, Cha-Jung ;
Bhan, Aditya .
ACS CATALYSIS, 2017, 7 (02) :1113-1122
[7]   Cu3-Cluster-Doped Monolayer Mo2CO2 (MXene) as an Electron Reservoir for Catalyzing a CO Oxidation Reaction [J].
Cheng, Cheng ;
Zhang, Xilin ;
Yang, Zongxian ;
Zhou, Zhen .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (38) :32903-32912
[8]   New catalysts for the conversion of methane to synthesis gas: Molybdenum and tungsten carbide [J].
Claridge, JB ;
York, APE ;
Brungs, AJ ;
Marquez-Alvarez, C ;
Sloan, J ;
Tsang, SC ;
Green, MLH .
JOURNAL OF CATALYSIS, 1998, 180 (01) :85-100
[9]   ProQEXAFS: a highly optimized parallelized rapid processing software for QEXAFS data [J].
Clark, Adam H. ;
Imbao, Jerick ;
Frahm, Ronald ;
Nachtegaal, Maarten .
JOURNAL OF SYNCHROTRON RADIATION, 2020, 27 :551-557
[10]  
Cossu G., 2018, DEV APPL COST EFFECT