Heteroclinic Structure of Parametric Resonance in the Nonlinear Schrodinger Equation

被引:31
作者
Conforti, M. [1 ]
Mussot, A. [1 ]
Kudlinski, A. [1 ]
Nodari, S. Rota [2 ]
Dujardin, G. [3 ,4 ]
De Bievre, S. [3 ,4 ]
Armaroli, A. [5 ]
Trillo, S. [6 ]
机构
[1] Univ Lille, CNRS, UMR PhLAM Phys Lasers Atomes & Mol 8523, F-59000 Lille, France
[2] Univ Bourgogne Franche Comte, CNRS, IMB UMR 5584, F-21000 Dijon, France
[3] Univ Lille, CNRS, UMR Lab Paul Painleve 8524, F-59000 Lille, France
[4] Univ Lille, INRIA, Equipe MEPHYSTO, F-59000 Lille, France
[5] Univ Rennes 1, ENSSAT, FOTON CNRS UMR 6082, 6 Rue Kerampont,CS 80518, F-22305 Lannion, France
[6] Univ Ferrara, Dipartimento Ingn, Via Saragat 1, I-44122 Ferrara, Italy
关键词
NUMERICALLY INDUCED CHAOS; MODULATIONAL INSTABILITY; ROGUE WAVES; DRIVEN; FIBERS;
D O I
10.1103/PhysRevLett.117.013901
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the nonlinear stage of modulational instability induced by parametric driving in the defocusing nonlinear Schrodinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearized Floquet analysis.
引用
收藏
页数:6
相关论文
共 59 条
[1]   Modulational instability of electromagnetic waves in birefringent fibers with periodic and random dispersion [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW E, 1999, 60 (01) :1042-1050
[2]   ON HOMOCLINIC STRUCTURE AND NUMERICALLY INDUCED CHAOS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
ABLOWITZ, MJ ;
HERBST, BM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) :339-351
[3]   Modulated periodic Stokes waves in deep water [J].
Ablowitz, MJ ;
Hammack, J ;
Henderson, D ;
Schober, CM .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :887-890
[4]   NUMERICAL CHAOS, ROUNDOFF ERRORS, AND HOMOCLINIC MANIFOLDS [J].
ABLOWITZ, MJ ;
SCHOBER, C ;
HERBST, BM .
PHYSICAL REVIEW LETTERS, 1993, 71 (17) :2683-2686
[5]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[6]   EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
ELEONSKII, VM ;
KULAGIN, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) :809-818
[7]  
[Anonymous], 1998, PHYS REV LETT, V81, P3383
[8]  
[Anonymous], 2006, PHYS REV LETT, V96
[9]  
[Anonymous], 2008, PHYS REV LETT, V100
[10]  
[Anonymous], 2005, PHYS REV LETT, V94