On higher differentiability of solutions of parabolic systems with discontinuous coefficients and (p, q)-growth

被引:14
作者
Giannetti, Flavia [1 ]
di Napoli, Antonia Passarelli [1 ]
Scheven, Christoph [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Univ Duisburg Essen, Fac Math, D-45117 Essen, Germany
关键词
Parabolic systems; higher differentiability; discontinuous coefficients; VARIATIONAL INTEGRALS; HIGHER INTEGRABILITY; ELLIPTIC-EQUATIONS; REGULARITY; MINIMIZERS; EXISTENCE; GROWTH; FUNCTIONALS; CALCULUS;
D O I
10.1017/prm.2018.63
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider weak solutions u : OT. RN to parabolic systems of the type u(t) - div a(x, t, Du) = 0 in OT = Ox (0, T), where the function a(x, t,.) satisfies (p, q)-growth conditions. We give an a priori estimate for weak solutions in the case of possibly discontinuous coefficients. More precisely, the partial maps x . a(x, t,.) under consideration may not be continuous, but may only possess a Sobolev-type regularity. In a certain sense, our assumption means that the weak derivatives Dxa(center dot, center dot,.) are contained in the class La( 0, T; L beta( O)), where the integrability exponents a, beta are coupled by p(n + 2) - 2n 2a + n/beta = 1-kappa for some.. (0, 1). For the gap between the two growth exponents we assume. 2 p < q p + 2. n + 2. Under further assumptions on the integrability of the spatial gradient, we prove a result on higher differentiability in space as well as the existence of a weak time derivative ut. Lp/(q- 1) loc (OT). We use the corresponding a priori estimate to deduce the existence of solutions of Cauchy-Dirichlet problems with the mentioned higher differentiability property.
引用
收藏
页码:419 / 451
页数:33
相关论文
共 35 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]  
[Anonymous], 1997, MONOTONE OPERATORS B, DOI DOI 10.1090/SURV/049
[3]   Regularity in parabolic systems with continuous coefficients [J].
Boegelein, V. ;
Foss, M. ;
Mingione, G. .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) :903-938
[4]   Existence of evolutionary variational solutions via the calculus of variations [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (12) :3912-3942
[5]   Parabolic equations with p, q-growth [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (04) :535-563
[6]   Parabolic Systems with p, q-Growth: A Variational Approach [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) :219-267
[7]  
Bögelein V, 2010, ANN I H POINCARE-AN, V27, P145, DOI 10.1016/j.anihpc.2009.09.002
[8]  
Carozza M, 2014, ANN SCUOLA NORM-SCI, V13, P1065
[9]   Higher differentiability of minimizers of convex variational integrals [J].
Carozza, Menita ;
Kristensen, Jan ;
di Napoli, Antonia Passarelli .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03) :395-411
[10]   Higher integrability for minimizers of asymptotically convex integrals with discontinuous coefficients [J].
Cupini, Giovanni ;
Giannetti, Flavia ;
Giova, Raffaella ;
di Napoli, Antonia Passarelli .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 154 :7-24