Self-catalytic growth of horizontal and straight Si nanowires on Si substrates using a sputter deposition technique

被引:3
作者
Dhara, Soumen [2 ]
Giri, P. K. [1 ,2 ]
机构
[1] Indian Inst Technol, Ctr Nanotechnol, Gauhati 781039, Guwahati, India
[2] Indian Inst Technol, Dept Phys, Gauhati 781039, Guwahati, India
关键词
Si nanowires; Catalyst free growth; Raman; Sputtering; SILICON NANOWIRES; THERMAL EVAPORATION; ATOMS;
D O I
10.1016/j.ssc.2010.07.031
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We report on the growth of horizontal and straight Si nanowires (NWs) on Si substrate using sputter deposition of the Si layer followed by thermal annealing at 1000 degrees C and above. The growth of horizontal NWs was achieved without the use of any metal catalyst. Uniform cylindrical shaped Si NWs with a diameter in the range of 50-60 nm and a length of up to 8 mu m were synthesized. The as-synthesized Si NWs have a Si core covered with a thin amorphous native oxide layer, as revealed by high resolution transmission electron microscopy. The aspect ratio of these Si NWs is in the range of 100-160. Micro-Raman studies on the NWs reveal a tensile strain on the Si NW core due to presence of a thin oxide layer. From the Raman shift, we calculate a strain of 1.0% for the catalyst free Si NW. FTIR analysis indicates the presence of interstitial oxygen atoms in the Si NWs, as expected from oxidation of Si NWs. For comparison, metal catalyst (Au) assisted Si NWs have also been grown on Si(100) substrate by a similar process. These NWs have a similar diameter and a marginally higher aspect ratio. A model for the growth mechanism of horizontal NWs is presented. This represents one of the first examples of direct horizontal growth of straight Si NWs on commonly used Si substrates suitable for nanoelectronic device fabrication. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1923 / 1927
页数:5
相关论文
共 25 条
[1]   Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors [J].
Ahn, Y ;
Dunning, J ;
Park, J .
NANO LETTERS, 2005, 5 (07) :1367-1370
[2]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[3]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[4]  
De Wolf I, 1999, J RAMAN SPECTROSC, V30, P877, DOI 10.1002/(SICI)1097-4555(199910)30:10<877::AID-JRS464>3.0.CO
[5]  
2-5
[6]   Compressive uniaxially strained silicon on insulator by prestrained wafer bonding and layer transfer [J].
Himcinschi, C. ;
Reiche, M. ;
Scholz, R. ;
Christiansen, S. H. ;
Goesele, U. .
APPLIED PHYSICS LETTERS, 2007, 90 (23)
[7]   High-frequency FTIR absorption of SiO2/Si nanowires [J].
Hu, QL ;
Suzuki, H ;
Gao, H ;
Araki, H ;
Yang, W ;
Noda, T .
CHEMICAL PHYSICS LETTERS, 2003, 378 (3-4) :299-304
[8]   Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires [J].
Kim, Byung-Sung ;
Koo, Tae-Woong ;
Lee, Jae-Hyun ;
Kim, Duk Soo ;
Jung, Young Chai ;
Hwang, Sung Woo ;
Choi, Byoung Lyong ;
Lee, Eun Kyung ;
Kim, Jong Min ;
Whang, Dongmok .
NANO LETTERS, 2009, 9 (02) :864-869
[9]   Some aspects of substrate pretreatment for epitaxial Si nanowire growth [J].
Lugstein, A. ;
Hyun, Y. J. ;
Steinmair, M. ;
Dielacher, B. ;
Hauer, G. ;
Bertagnolli, E. .
NANOTECHNOLOGY, 2008, 19 (48)
[10]   Fullerene-structured nanowires of silicon [J].
Marsen, B ;
Sattler, K .
PHYSICAL REVIEW B, 1999, 60 (16) :11593-11600