Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC

被引:59
作者
Wang, Chengdi [1 ]
Ma, Jiechao [2 ]
Shao, Jun [1 ]
Zhang, Shu [2 ]
Li, Jingwei [1 ]
Yan, Junpeng [2 ]
Zhao, Zhehao [3 ]
Bai, Congchen [4 ]
Yu, Yizhou [2 ,5 ]
Li, Weimin [1 ]
机构
[1] Sichuan Univ, West China Hosp, Medx Ctr Mfg, Frontiers Sci Ctr Dis Related Mol Network,West Chi, Chengdu, Peoples R China
[2] AI Lab, Deepwise Healthcare, Beijing, Peoples R China
[3] Sichuan Univ, West China Sch Med, West China Hosp, Chengdu, Peoples R China
[4] Sichuan Univ, West China Hosp, Dept Med Informat, Chengdu, Peoples R China
[5] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; PD-L1; expression; survival; lung cancer; radiomics; CELL LUNG-CANCER;
D O I
10.3389/fimmu.2022.828560
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundProgrammed death-ligand 1 (PD-L1) assessment of lung cancer in immunohistochemical assays was only approved diagnostic biomarker for immunotherapy. But the tumor proportion score (TPS) of PD-L1 was challenging owing to invasive sampling and intertumoral heterogeneity. There was a strong demand for the development of an artificial intelligence (AI) system to measure PD-L1 expression signature (ES) non-invasively. MethodsWe developed an AI system using deep learning (DL), radiomics and combination models based on computed tomography (CT) images of 1,135 non-small cell lung cancer (NSCLC) patients with PD-L1 status. The deep learning feature was obtained through a 3D ResNet as the feature map extractor and the specialized classifier was constructed for the prediction and evaluation tasks. Then, a Cox proportional-hazards model combined with clinical factors and PD-L1 ES was utilized to evaluate prognosis in survival cohort. ResultsThe combination model achieved a robust high-performance with area under the receiver operating characteristic curves (AUCs) of 0.950 (95% CI, 0.938-0.960), 0.934 (95% CI, 0.906-0.964), and 0.946 (95% CI, 0.933-0.958), for predicting PD-L1ES <1%, 1-49%, and >= 50% in validation cohort, respectively. Additionally, when combination model was trained on multi-source features the performance of overall survival evaluation (C-index: 0.89) could be superior compared to these of the clinical model alone (C-index: 0.86). ConclusionA non-invasive measurement using deep learning was proposed to access PD-L1 expression and survival outcomes of NSCLC. This study also indicated that deep learning model combined with clinical characteristics improved prediction capabilities, which would assist physicians in making rapid decision on clinical treatment options.
引用
收藏
页数:11
相关论文
共 34 条
[21]   Cancer immunotherapy using checkpoint blockade [J].
Ribas, Antoni ;
Wolchok, Jedd D. .
SCIENCE, 2018, 359 (6382) :1350-+
[22]   Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC [J].
Socinski, M. A. ;
Jotte, R. M. ;
Cappuzzo, F. ;
Orlandi, F. ;
Stroyakovskiy, D. ;
Nogami, N. ;
Rodriguez-Abreu, D. ;
Moro-Sibilot, D. ;
Thomas, C. A. ;
Barlesi, F. ;
Finley, G. ;
Kelsch, C. ;
Lee, A. ;
Coleman, S. ;
Deng, Y. ;
Shen, Y. ;
Kowanetz, M. ;
Lopez-Chavez, A. ;
Sandler, A. ;
Reck, M. ;
Ahualli, A. ;
Jarchum, G. ;
Kaen, D. L. ;
Kahl, S. ;
Kotliar, M. ;
Kowalyszyn, R. D. ;
Lerzo, G. ;
Magri, I ;
Martin, C. ;
Pastor, A. ;
Picon, P. ;
Streich, G. ;
Varela, M. ;
Blinman, P. ;
Boyer, M. ;
Crombie, C. ;
Gauden, S. ;
Gill, S. ;
Hughes, B. ;
John, T. ;
Joshi, A. ;
Kosmider, S. ;
Lewis, C. ;
Millward, M. ;
Nordman, I ;
Nott, L. ;
O'Byrne, K. ;
Parnis, F. ;
Potasz, N. ;
Richardson, G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (24) :2288-2301
[23]   A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study [J].
Sun, Roger ;
Limkin, Elaine Johanna ;
Vakalopoulou, Maria ;
Dercle, Laurent ;
Champiat, Stephane ;
Han, Shan Rong ;
Verlingue, Loic ;
Brandao, David ;
Lancia, Andrea ;
Ammari, Samy ;
Hollebecque, Antoine ;
Scoazec, Jean-Yves ;
Marabelle, Aurelien ;
Massard, Christophe ;
Soria, Jean-Charles ;
Robert, Charlotte ;
Paragios, Nikos ;
Deutsch, Eric ;
Ferte, Charles .
LANCET ONCOLOGY, 2018, 19 (09) :1180-1191
[24]   Radiomics study for predicting the expression of PD-L1 in non -small cell lung cancer based on CT images and clinicopathologic features [J].
Sun, Zongqiong ;
Hu, Shudong ;
Ge, Yuxi ;
Wang, Jun ;
Duan, Shaofeng ;
Song, Jiayang ;
Hu, Chunhong ;
Li, Yonggang .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (03) :449-459
[25]   Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (03) :209-249
[26]   Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy [J].
Tan, Wei Chang Colin ;
Nerurkar, Sanjna Nilesh ;
Cai, Hai Yun ;
Ng, Harry Ho Man ;
Wu, Duoduo ;
Wee, Yu Ting Felicia ;
Lim, Jeffrey Chun Tatt ;
Yeong, Joe ;
Lim, Tony Kiat Hon .
CANCER COMMUNICATIONS, 2020, 40 (04) :135-153
[27]   Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images [J].
Tian, Panwen ;
He, Bingxi ;
Mu, Wei ;
Liu, Kunqin ;
Liu, Li ;
Zeng, Hao ;
Liu, Yujie ;
Jiang, Lili ;
Zhou, Ping ;
Huang, Zhipei ;
Dong, Di ;
Li, Weimin .
THERANOSTICS, 2021, 11 (05) :2098-2107
[28]   The landscape of immune checkpoint inhibitor plus chemotherapy versus immunotherapy for advanced non-small-cell lung cancer: A systematic review and meta-analysis [J].
Wang, Chengdi ;
Qiao, Wenliang ;
Jiang, Yuting ;
Zhu, Min ;
Shao, Jun ;
Wang, Tao ;
Liu, Dan ;
Li, Weimin .
JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (05) :4913-4927
[29]   Radiomics Study for Predicting the Expression of PD-L1 and Tumor Mutation Burden in Non-Small Cell Lung Cancer Based on CT Images and Clinicopathological Features [J].
Wen, Qiang ;
Yang, Zhe ;
Dai, Honghai ;
Feng, Alei ;
Li, Qiang .
FRONTIERS IN ONCOLOGY, 2021, 11
[30]   Artificial intelligence-assisted system for precision diagnosis of PD-L1 expression in non-small cell lung cancer [J].
Wu, Jianghua ;
Liu, Changling ;
Liu, Xiaoqing ;
Sun, Wei ;
Li, Linfeng ;
Gao, Nannan ;
Zhang, Yajun ;
Yang, Xin ;
Zhang, Junjie ;
Wang, Haiyue ;
Liu, Xinying ;
Huang, Xiaozheng ;
Zhang, Yanhui ;
Cheng, Runfen ;
Chi, Kaiwen ;
Mao, Luning ;
Zhou, Lixin ;
Lin, Dongmei ;
Ling, Shaoping .
MODERN PATHOLOGY, 2022, 35 (03) :403-411