Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC

被引:58
作者
Wang, Chengdi [1 ]
Ma, Jiechao [2 ]
Shao, Jun [1 ]
Zhang, Shu [2 ]
Li, Jingwei [1 ]
Yan, Junpeng [2 ]
Zhao, Zhehao [3 ]
Bai, Congchen [4 ]
Yu, Yizhou [2 ,5 ]
Li, Weimin [1 ]
机构
[1] Sichuan Univ, West China Hosp, Medx Ctr Mfg, Frontiers Sci Ctr Dis Related Mol Network,West Chi, Chengdu, Peoples R China
[2] AI Lab, Deepwise Healthcare, Beijing, Peoples R China
[3] Sichuan Univ, West China Sch Med, West China Hosp, Chengdu, Peoples R China
[4] Sichuan Univ, West China Hosp, Dept Med Informat, Chengdu, Peoples R China
[5] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; PD-L1; expression; survival; lung cancer; radiomics; CELL LUNG-CANCER;
D O I
10.3389/fimmu.2022.828560
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundProgrammed death-ligand 1 (PD-L1) assessment of lung cancer in immunohistochemical assays was only approved diagnostic biomarker for immunotherapy. But the tumor proportion score (TPS) of PD-L1 was challenging owing to invasive sampling and intertumoral heterogeneity. There was a strong demand for the development of an artificial intelligence (AI) system to measure PD-L1 expression signature (ES) non-invasively. MethodsWe developed an AI system using deep learning (DL), radiomics and combination models based on computed tomography (CT) images of 1,135 non-small cell lung cancer (NSCLC) patients with PD-L1 status. The deep learning feature was obtained through a 3D ResNet as the feature map extractor and the specialized classifier was constructed for the prediction and evaluation tasks. Then, a Cox proportional-hazards model combined with clinical factors and PD-L1 ES was utilized to evaluate prognosis in survival cohort. ResultsThe combination model achieved a robust high-performance with area under the receiver operating characteristic curves (AUCs) of 0.950 (95% CI, 0.938-0.960), 0.934 (95% CI, 0.906-0.964), and 0.946 (95% CI, 0.933-0.958), for predicting PD-L1ES <1%, 1-49%, and >= 50% in validation cohort, respectively. Additionally, when combination model was trained on multi-source features the performance of overall survival evaluation (C-index: 0.89) could be superior compared to these of the clinical model alone (C-index: 0.86). ConclusionA non-invasive measurement using deep learning was proposed to access PD-L1 expression and survival outcomes of NSCLC. This study also indicated that deep learning model combined with clinical characteristics improved prediction capabilities, which would assist physicians in making rapid decision on clinical treatment options.
引用
收藏
页数:11
相关论文
共 34 条
[1]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[2]   Lung cancer survival only increases by a small amount despite recent treatment advances [J].
Bagcchi, Sanjeet .
LANCET RESPIRATORY MEDICINE, 2017, 5 (03) :169-169
[3]   Pembrolizumab plus chemotherapy versus chemotherapy alone in patients with advanced non-small cell lung cancer without tumor PD-L1 expression: A pooled analysis of 3 randomized controlled trials [J].
Borghaei, Hossein ;
Langer, Corey J. ;
Paz-Ares, Luis ;
Rodriguez-Abreu, Delvys ;
Halmos, Balazs ;
Garassino, Marina C. ;
Houghton, Baerin ;
Kurata, Takayasu ;
Cheng, Ying ;
Lin, Jianxin ;
Pietanza, M. Catherine ;
Piperdi, Bilal ;
Gadgeel, Shirish M. .
CANCER, 2020, 126 (22) :4867-4877
[4]   Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients [J].
Bracci, Stefano ;
Dolciami, Miriam ;
Trobiani, Claudio ;
Izzo, Antonella ;
Pernazza, Angelina ;
D'Amati, Giulia ;
Manganaro, Lucia ;
Ricci, Paolo .
RADIOLOGIA MEDICA, 2021, 126 (11) :1425-1433
[5]   Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression [J].
Chang, Chih-Hao ;
Qiu, Jing ;
O'Sullivan, David ;
Buck, Michael D. ;
Noguchi, Takuro ;
Curtis, Jonathan D. ;
Chen, Qiongyu ;
Gindin, Mariel ;
Gubin, Matthew M. ;
van der Windt, Gerritje J. W. ;
Tonc, Elena ;
Schreiber, Robert D. ;
Pearce, Edward J. ;
Pearce, Erika L. .
CELL, 2015, 162 (06) :1229-1241
[6]   Intra- and Interobserver Reproducibility Assessment of PD-L1 Biomarker in Non-Small Cell Lung Cancer [J].
Cooper, Wendy A. ;
Russell, Prudence A. ;
Cherian, Maya ;
Duhig, Edwina E. ;
Godbolt, David ;
Jessup, Peter J. ;
Khoo, Christine ;
Leslie, Connull ;
Mahar, Annabelle ;
Moffat, David F. ;
Sivasubramaniam, Vanathi ;
Faure, Celine ;
Reznichenko, Alena ;
Grattan, Amanda ;
Fox, Stephen B. .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4569-4577
[7]   Non-Small Cell Lung Cancer, Version 2.2021 Featured Updates to the NCCN Guidelines [J].
Ettinger, David S. ;
Wood, Douglas E. ;
Aisner, Dara L. ;
Akerley, Wallace ;
Bauman, Jessica R. ;
Bharat, Ankit ;
Bruno, Debora S. ;
Chang, Joe Y. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
Dilling, Thomas J. ;
Dowell, Jonathan ;
Gettinger, Scott ;
Gubens, Matthew A. ;
Hegde, Aparna ;
Hennon, Mark ;
Lackner, Rudy P. ;
Lanuti, Michael ;
Leal, Ticiana A. ;
Lin, Jules ;
Loo, Billy W., Jr. ;
Lovly, Christine M. ;
Martins, Renato G. ;
Massarelli, Erminia ;
Morgensztern, Daniel ;
Ng, Thomas ;
Otterson, Gregory A. ;
Patel, Sandip P. ;
Riely, Gregory J. ;
Schild, Steven E. ;
Shapiro, Theresa A. ;
Singh, Aditi P. ;
Stevenson, James ;
Tam, Alda ;
Yanagawa, Jane ;
Yang, Stephen C. ;
Gregory, Kristina M. ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2021, 19 (03) :254-266
[8]   Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer [J].
Gandhi, L. ;
Rodriguez-Abreu, D. ;
Gadgeel, S. ;
Esteban, E. ;
Felip, E. ;
De Angelis, F. ;
Domine, M. ;
Clingan, P. ;
Hochmair, M. J. ;
Powell, S. F. ;
Cheng, S. Y. -S. ;
Bischoff, H. G. ;
Peled, N. ;
Grossi, F. ;
Jennens, R. R. ;
Reck, M. ;
Hui, R. ;
Garon, E. B. ;
Boyer, M. ;
Rubio-Viqueira, B. ;
Novello, S. ;
Kurata, T. ;
Gray, J. E. ;
Vida, J. ;
Wei, Z. ;
Yang, J. ;
Raftopoulos, H. ;
Pietanza, M. C. ;
Garassino, M. C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (22) :2078-2092
[9]   Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer [J].
Hellmann, M. D. ;
Paz-Ares, L. ;
Bernabe Caro, R. ;
Zurawski, B. ;
Kim, S. -W. ;
Carcereny Costa, E. ;
Park, K. ;
Alexandru, A. ;
Lupinacci, L. ;
de la Mora Jimenez, E. ;
Sakai, H. ;
Albert, I. ;
Vergnenegre, A. ;
Peters, S. ;
Syrigos, K. ;
Barlesi, F. ;
Reck, M. ;
Borghaei, H. ;
Brahmer, J. R. ;
O'Byrne, K. J. ;
Geese, W. J. ;
Bhagavatheeswaran, P. ;
Rabindran, S. K. ;
Kasinathan, R. S. ;
Nathan, F. E. ;
Ramalingam, S. S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (21) :2020-2031
[10]   Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden [J].
Hellmann, M. D. ;
Ciuleanu, T. -E. ;
Pluzanski, A. ;
Lee, J. S. ;
Otterson, G. A. ;
Audigier-Valette, C. ;
Minenza, E. ;
Linardou, H. ;
Burgers, S. ;
Salman, P. ;
Borghaei, H. ;
Ramalingam, S. S. ;
Brahmer, J. ;
Reck, M. ;
O'Byrne, K. J. ;
Geese, W. J. ;
Green, G. ;
Chang, H. ;
Szustakowski, J. ;
Bhagavatheeswaran, P. ;
Healey, D. ;
Fu, Y. ;
Nathan, F. ;
Paz-Ares, L. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (22) :2093-2104