Proton Exchange Membrane Fuel Cell Parameter Extraction Using a Supply-Demand-Based Optimization Algorithm

被引:17
作者
Al-Shamma'a, Abdullrahman A. [1 ]
Ali, Fekri Abdulraqeb Ahmed [2 ]
Alhoshan, Mansour S. [2 ]
Alturki, Fahd A. [1 ]
Farh, Hassan M. H. [1 ]
Alam, Javed [2 ]
AlSharabi, Khalil [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Elect Engn, Riyadh 11421, Saudi Arabia
[2] King Saud Univ, Coll Engn, Dept Chem Engn, Riyadh 11451, Saudi Arabia
关键词
parameter extraction; PEM fuel cell; supply-demand-based optimization (SDO); DIFFERENTIAL EVOLUTION; SEARCH ALGORITHM; PEMFC MODEL; IDENTIFICATION; PERFORMANCE; WATER;
D O I
10.3390/pr9081416
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
For proton exchange membrane fuel cells (PEMFCs), the parameter extraction issue is among the most widely studied problems in the field of energy storage systems, since the precise identification of such parameters plays an important role in increasing the PEMFC performance and life span. The optimization process is intended to adjust the performance of PEMFCs by appraising the optimal parameters that produce a good estimation of the current-voltage (I-V) curve. In order to build an accurate equivalent circuit model for PEMFCs, a reliable and effective parameter extraction algorithm, termed a supply-demand-based optimization (SDO) algorithm, is proposed in this paper. Nine parameters (xi(1), xi(2), xi(3), xi(4), R-c, beta, lambda, l, and J(max)) are evaluated, to minimize the sum squared deviation (SSE) between the experimental and simulated I-V curves. To validate the feasibility and effectiveness of the SDO algorithm, four sets of experimental data with diverse characteristics and two well-known PEMFC stacks (BSC500W and 500W Horizon) are employed. Comparison of the simulated and experimental results clearly demonstrates the superiority/competitiveness of the SDO algorithm over five well-established parameter extraction algorithms, i.e., the whale optimization algorithm (WOA), grey wolf optimization (GWO), Harris hawks optimization (HHO), and genetic algorithm (GA). Several evaluation criteria, including best SSE, worst SSE, mean SSE, and standard deviation, show that the SDO algorithm has merits in terms of PEMFC modeling.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Effective Parameter Extraction of Different Polymer Electrolyte Membrane Fuel Cell Stack Models Using a Modified Artificial Ecosystem Optimization Algorithm
    Menesy, Ahmed S.
    Sultan, Hamdy M.
    Korashy, Ahmed
    Banakhr, Fahd A.
    Ashmawy, Mohamed G.
    Kamel, Salah
    IEEE ACCESS, 2020, 8 : 31892 - 31909
  • [42] An evolutionary multi-algorithm based framework for the parametric estimation of proton exchange membrane fuel cell
    Sharma, Pankaj
    Raju, Saravanakumar
    Salgotra, Rohit
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [43] Parameter extraction and uncertainty analysis of a proton exchange membrane fuel cell system based on Monte Carlo simulation
    Xu, Liangfei
    Fang, Chuan
    Hu, Junming
    Cheng, Siliang
    Li, Jianqiu
    Ouyang, Minggao
    Lehnert, Werner
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (04) : 2309 - 2326
  • [44] Optimal proton exchange membrane fuel cell modelling based on hybrid Teaching Learning Based Optimization - Differential Evolution algorithm
    Turgut, Oguz Emrah
    Coban, Mustafa Turhan
    AIN SHAMS ENGINEERING JOURNAL, 2016, 7 (01) : 347 - 360
  • [45] Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms
    Kandidayeni, M.
    Macias, A.
    Khalatbarisoltani, A.
    Boulon, L.
    Kelouwani, S.
    ENERGY, 2019, 183 : 912 - 925
  • [46] Precise Modeling of Proton Exchange Membrane Fuel Cell Using the Modified Bald Eagle Optimization Algorithm
    Zaky, Alaa A.
    Ghoniem, Rania M.
    Selim, F.
    SUSTAINABILITY, 2023, 15 (13)
  • [47] Modelling and Parameter Observation for Proton Exchange Membrane Fuel Cell
    Nassif, Younane
    Hamdan, Hani
    PROCEEDINGS 2015 INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING DESE 2015, 2015, : 270 - 275
  • [48] Enhancing parameter identification for proton exchange membrane fuel cell using modified manta ray foraging optimization
    Sultan, Hamdy M.
    Menesy, Ahmed S.
    Korashy, Ahmed
    Hussien, Abdelazim G.
    Kamel, Salah
    ENERGY REPORTS, 2024, 12 : 1987 - 2013
  • [49] Parameter optimal identification of proton exchange membrane fuel cell model based on an improved differential evolution algorithm
    Xu B.
    Huagong Xuebao/CIESC Journal, 2021, 72 (03): : 1512 - 1520
  • [50] Strategy optimization of proton exchange membrane fuel cell cold start
    Ji, Weichen
    Lin, Rui
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (19): : 2241 - 2257