Proton Exchange Membrane Fuel Cell Parameter Extraction Using a Supply-Demand-Based Optimization Algorithm

被引:17
作者
Al-Shamma'a, Abdullrahman A. [1 ]
Ali, Fekri Abdulraqeb Ahmed [2 ]
Alhoshan, Mansour S. [2 ]
Alturki, Fahd A. [1 ]
Farh, Hassan M. H. [1 ]
Alam, Javed [2 ]
AlSharabi, Khalil [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Elect Engn, Riyadh 11421, Saudi Arabia
[2] King Saud Univ, Coll Engn, Dept Chem Engn, Riyadh 11451, Saudi Arabia
关键词
parameter extraction; PEM fuel cell; supply-demand-based optimization (SDO); DIFFERENTIAL EVOLUTION; SEARCH ALGORITHM; PEMFC MODEL; IDENTIFICATION; PERFORMANCE; WATER;
D O I
10.3390/pr9081416
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
For proton exchange membrane fuel cells (PEMFCs), the parameter extraction issue is among the most widely studied problems in the field of energy storage systems, since the precise identification of such parameters plays an important role in increasing the PEMFC performance and life span. The optimization process is intended to adjust the performance of PEMFCs by appraising the optimal parameters that produce a good estimation of the current-voltage (I-V) curve. In order to build an accurate equivalent circuit model for PEMFCs, a reliable and effective parameter extraction algorithm, termed a supply-demand-based optimization (SDO) algorithm, is proposed in this paper. Nine parameters (xi(1), xi(2), xi(3), xi(4), R-c, beta, lambda, l, and J(max)) are evaluated, to minimize the sum squared deviation (SSE) between the experimental and simulated I-V curves. To validate the feasibility and effectiveness of the SDO algorithm, four sets of experimental data with diverse characteristics and two well-known PEMFC stacks (BSC500W and 500W Horizon) are employed. Comparison of the simulated and experimental results clearly demonstrates the superiority/competitiveness of the SDO algorithm over five well-established parameter extraction algorithms, i.e., the whale optimization algorithm (WOA), grey wolf optimization (GWO), Harris hawks optimization (HHO), and genetic algorithm (GA). Several evaluation criteria, including best SSE, worst SSE, mean SSE, and standard deviation, show that the SDO algorithm has merits in terms of PEMFC modeling.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system
    Chen, Huicui
    Liu, Zhao
    Ye, Xichen
    Yi, Liu
    Xu, Sichen
    Zhang, Tong
    ENERGY, 2022, 238
  • [32] Robust parameter estimation of proton exchange membrane fuel cell using Huber loss statistical function
    Saad, Bahaa
    El-Sehiemy, Ragab A.
    Hasanien, Hany M.
    El-Dabah, Mahmoud A.
    ENERGY CONVERSION AND MANAGEMENT, 2025, 323
  • [33] Parameter Identification of Proton Exchange Membrane Fuel Cell Stacks Using Bonobo Optimizer
    Sultan, Hamdy M.
    Menesy, Ahmed S.
    Kamel, Salah
    Tostado-Veliz, Marcos
    Jurado, Francisco
    2020 20TH IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2020 4TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2020,
  • [34] Optimization of a proton exchange membrane fuel cell membrane electrode assembly
    Secanell, Marc
    Songprakorp, Ron
    Djilali, Ned
    Suleman, Afzal
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 40 (1-6) : 563 - 583
  • [35] Optimizing parameter extraction in proton exchange membrane fuel cell models via differential evolution with dynamic crossover strategy
    Saadaoui, Driss
    Elyaqouti, Mustapha
    Choulli, Imade
    Assalaou, Khalid
    Ben Hmamou, Dris
    Lidaighbi, Souad
    Arjdal, El hanafi
    Elhammoudy, Abdelfattah
    Abazine, Ismail
    ENERGY, 2025, 321
  • [36] A Novel Opposition-Based Arithmetic Optimization Algorithm for Parameter Extraction of PEM Fuel Cell
    Sharma, Abhishek
    Khan, Rizwan Ahamad
    Sharma, Abhinav
    Kashyap, Diwakar
    Rajput, Shailendra
    ELECTRONICS, 2021, 10 (22)
  • [37] Optimization of high-temperature proton exchange membrane fuel cell flow channel based on genetic algorithm
    Huang, Taiming
    Wang, Wei
    Yuan, Yao
    Huang, Jie
    Chen, Xi
    Zhang, Jing
    Kong, Xiangzhong
    Zhang, Yan
    Wan, Zhongmin
    ENERGY REPORTS, 2021, 7 : 1374 - 1384
  • [38] PARAMETER IDENTIFICATION OF PROTON EXCHANGE MEMBRANE FUEL CELLS MODEL BASED ON IMPROVED CHICKEN SWARM OPTIMIZATION ALGORITHM
    Yang Y.
    Ling M.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (02): : 269 - 278
  • [39] Parameter identification of proton exchange membrane fuel cell via Levenberg-Marquardt backpropagation algorithm
    Yang, Bo
    Zeng, Chunyuan
    Wang, Long
    Guo, Yinyuan
    Chen, Guanghua
    Guo, Zhengxun
    Chen, Yijun
    Li, Danyang
    Cao, Pulin
    Shu, Hongchun
    Yu, Tao
    Zhu, Jiawei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (44) : 22998 - 23012
  • [40] A Tribe Particle Swarm Optimization for Parameter Identification of Proton Exchange Membrane Fuel Cell
    Sedighizadeh, M.
    Kashani, M. Farhangian
    INTERNATIONAL JOURNAL OF ENGINEERING, 2015, 28 (01): : 16 - 24