Proton Exchange Membrane Fuel Cell Parameter Extraction Using a Supply-Demand-Based Optimization Algorithm

被引:17
|
作者
Al-Shamma'a, Abdullrahman A. [1 ]
Ali, Fekri Abdulraqeb Ahmed [2 ]
Alhoshan, Mansour S. [2 ]
Alturki, Fahd A. [1 ]
Farh, Hassan M. H. [1 ]
Alam, Javed [2 ]
AlSharabi, Khalil [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Elect Engn, Riyadh 11421, Saudi Arabia
[2] King Saud Univ, Coll Engn, Dept Chem Engn, Riyadh 11451, Saudi Arabia
关键词
parameter extraction; PEM fuel cell; supply-demand-based optimization (SDO); DIFFERENTIAL EVOLUTION; SEARCH ALGORITHM; PEMFC MODEL; IDENTIFICATION; PERFORMANCE; WATER;
D O I
10.3390/pr9081416
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
For proton exchange membrane fuel cells (PEMFCs), the parameter extraction issue is among the most widely studied problems in the field of energy storage systems, since the precise identification of such parameters plays an important role in increasing the PEMFC performance and life span. The optimization process is intended to adjust the performance of PEMFCs by appraising the optimal parameters that produce a good estimation of the current-voltage (I-V) curve. In order to build an accurate equivalent circuit model for PEMFCs, a reliable and effective parameter extraction algorithm, termed a supply-demand-based optimization (SDO) algorithm, is proposed in this paper. Nine parameters (xi(1), xi(2), xi(3), xi(4), R-c, beta, lambda, l, and J(max)) are evaluated, to minimize the sum squared deviation (SSE) between the experimental and simulated I-V curves. To validate the feasibility and effectiveness of the SDO algorithm, four sets of experimental data with diverse characteristics and two well-known PEMFC stacks (BSC500W and 500W Horizon) are employed. Comparison of the simulated and experimental results clearly demonstrates the superiority/competitiveness of the SDO algorithm over five well-established parameter extraction algorithms, i.e., the whale optimization algorithm (WOA), grey wolf optimization (GWO), Harris hawks optimization (HHO), and genetic algorithm (GA). Several evaluation criteria, including best SSE, worst SSE, mean SSE, and standard deviation, show that the SDO algorithm has merits in terms of PEMFC modeling.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling
    Priya, K.
    Sathishkumar, K.
    Rajasekar, N.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 93 : 121 - 144
  • [22] Proton Exchange Membrane Fuel Cell Steady State Modeling Using Marine Predator Algorithm Optimizer
    Yakout, Ahmed H.
    Hasanien, Hany M.
    Kotb, Hossam
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (04) : 3765 - 3774
  • [23] Modeling and optimization of a proton exchange membrane fuel cell using particle swarm algorithm with constriction coefficient
    Abdi, Hamid
    Ait Messaoudene, Noureddine
    Kolsi, Lioua
    Naceur, Mohamed Wahib
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 144 (05) : 1749 - 1759
  • [24] A Critical Note of Major Parameter Extraction Methods for Proton Exchange Membrane Fuel Cell (PEMFC)
    Li, Danyang
    Yang, Bo
    Han, Yiming
    FRONTIERS IN ENERGY RESEARCH, 2022, 9
  • [25] Optimal Parameter Extraction and Performance Analysis of Proton Exchange Membrane Fuel Cell
    Khajuria, Rahul
    Lamba, Ravita
    Kumar, Rajesh
    2022 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS, PEDES, 2022,
  • [26] Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization
    Ye, Meiyinq
    Wang, Xiaodong
    Xu, Yousheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 981 - 989
  • [27] An enhanced efficient optimization algorithm (EINFO) for accurate extraction of proton exchange membrane fuel cell parameters
    Singla, Manish Kumar
    Hassan, Mohamed H.
    Gupta, Jyoti
    Jurado, Francisco
    Nijhawan, Parag
    Kamel, Salah
    SOFT COMPUTING, 2023, 27 (14) : 9619 - 9638
  • [28] Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell
    Zhang, Wei
    Wang, Ning
    Yang, Shipin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5796 - 5806
  • [29] Supply-Demand-Based Optimization: A Novel Economics-Inspired Algorithm for Global Optimization
    Zhao, Weiguo
    Wang, Liying
    Zhang, Zhenxing
    IEEE ACCESS, 2019, 7 : 73182 - 73206
  • [30] Developing the coyote optimization algorithm for extracting parameters of proton-exchange membrane fuel cell models
    Sultan, Hamdy M.
    Menesy, Ahmed S.
    Kamel, Salah
    Jurado, Francisco
    ELECTRICAL ENGINEERING, 2021, 103 (01) : 563 - 577