Proton Exchange Membrane Fuel Cell Parameter Extraction Using a Supply-Demand-Based Optimization Algorithm

被引:18
作者
Al-Shamma'a, Abdullrahman A. [1 ]
Ali, Fekri Abdulraqeb Ahmed [2 ]
Alhoshan, Mansour S. [2 ]
Alturki, Fahd A. [1 ]
Farh, Hassan M. H. [1 ]
Alam, Javed [2 ]
AlSharabi, Khalil [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Elect Engn, Riyadh 11421, Saudi Arabia
[2] King Saud Univ, Coll Engn, Dept Chem Engn, Riyadh 11451, Saudi Arabia
关键词
parameter extraction; PEM fuel cell; supply-demand-based optimization (SDO); DIFFERENTIAL EVOLUTION; SEARCH ALGORITHM; PEMFC MODEL; IDENTIFICATION; PERFORMANCE; WATER;
D O I
10.3390/pr9081416
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
For proton exchange membrane fuel cells (PEMFCs), the parameter extraction issue is among the most widely studied problems in the field of energy storage systems, since the precise identification of such parameters plays an important role in increasing the PEMFC performance and life span. The optimization process is intended to adjust the performance of PEMFCs by appraising the optimal parameters that produce a good estimation of the current-voltage (I-V) curve. In order to build an accurate equivalent circuit model for PEMFCs, a reliable and effective parameter extraction algorithm, termed a supply-demand-based optimization (SDO) algorithm, is proposed in this paper. Nine parameters (xi(1), xi(2), xi(3), xi(4), R-c, beta, lambda, l, and J(max)) are evaluated, to minimize the sum squared deviation (SSE) between the experimental and simulated I-V curves. To validate the feasibility and effectiveness of the SDO algorithm, four sets of experimental data with diverse characteristics and two well-known PEMFC stacks (BSC500W and 500W Horizon) are employed. Comparison of the simulated and experimental results clearly demonstrates the superiority/competitiveness of the SDO algorithm over five well-established parameter extraction algorithms, i.e., the whale optimization algorithm (WOA), grey wolf optimization (GWO), Harris hawks optimization (HHO), and genetic algorithm (GA). Several evaluation criteria, including best SSE, worst SSE, mean SSE, and standard deviation, show that the SDO algorithm has merits in terms of PEMFC modeling.
引用
收藏
页数:18
相关论文
共 55 条
[1]   Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer [J].
Agwa, Ahmed M. ;
El-Fergany, Attia A. ;
Sarhan, Gamal M. .
ENERGIES, 2019, 12 (10)
[2]   Techno-economic optimization of hybrid power system using genetic algorithm [J].
Al-Shamma'a, Abdullrahman A. ;
Addoweesh, Khaled E. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (12) :1608-1623
[3]   Effective parameters' identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer [J].
Ali, M. ;
El-Hameed, M. A. ;
Farahat, M. A. .
RENEWABLE ENERGY, 2017, 111 :455-462
[4]   Effects of operating parameters on performance of a proton exchange membrane fuel cell [J].
Amirinejad, Mehdi ;
Rowshanzamir, Soosan ;
Eikanic, Mohammad H. .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :872-875
[5]   PERFORMANCE MODELING OF THE BALLARD-MARK-IV SOLD POLYMER ELECTROLYTE FUEL-CELL .2. EMPIRICAL-MODEL DEVELOPMENT [J].
AMPHLETT, JC ;
BAUMERT, RM ;
MANN, RF ;
PEPPLEY, BA ;
ROBERGE, PR ;
HARRIS, TJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :9-15
[6]   A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (10) :1196-1204
[7]   An Innovative Global Harmony Search Algorithm for Parameter Identification of a PEM Fuel Cell Model [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (09) :3473-3480
[8]   A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2011, 12 (08) :638-646
[9]   Optimization of PEMFC model parameters with a modified particle swarm optimization [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) :1258-1265
[10]   Artificial immune system-based parameter extraction of proton exchange membrane fuel cell [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (04) :933-938