Proton Exchange Membrane Fuel Cell Parameter Extraction Using a Supply-Demand-Based Optimization Algorithm

被引:17
|
作者
Al-Shamma'a, Abdullrahman A. [1 ]
Ali, Fekri Abdulraqeb Ahmed [2 ]
Alhoshan, Mansour S. [2 ]
Alturki, Fahd A. [1 ]
Farh, Hassan M. H. [1 ]
Alam, Javed [2 ]
AlSharabi, Khalil [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Elect Engn, Riyadh 11421, Saudi Arabia
[2] King Saud Univ, Coll Engn, Dept Chem Engn, Riyadh 11451, Saudi Arabia
关键词
parameter extraction; PEM fuel cell; supply-demand-based optimization (SDO); DIFFERENTIAL EVOLUTION; SEARCH ALGORITHM; PEMFC MODEL; IDENTIFICATION; PERFORMANCE; WATER;
D O I
10.3390/pr9081416
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
For proton exchange membrane fuel cells (PEMFCs), the parameter extraction issue is among the most widely studied problems in the field of energy storage systems, since the precise identification of such parameters plays an important role in increasing the PEMFC performance and life span. The optimization process is intended to adjust the performance of PEMFCs by appraising the optimal parameters that produce a good estimation of the current-voltage (I-V) curve. In order to build an accurate equivalent circuit model for PEMFCs, a reliable and effective parameter extraction algorithm, termed a supply-demand-based optimization (SDO) algorithm, is proposed in this paper. Nine parameters (xi(1), xi(2), xi(3), xi(4), R-c, beta, lambda, l, and J(max)) are evaluated, to minimize the sum squared deviation (SSE) between the experimental and simulated I-V curves. To validate the feasibility and effectiveness of the SDO algorithm, four sets of experimental data with diverse characteristics and two well-known PEMFC stacks (BSC500W and 500W Horizon) are employed. Comparison of the simulated and experimental results clearly demonstrates the superiority/competitiveness of the SDO algorithm over five well-established parameter extraction algorithms, i.e., the whale optimization algorithm (WOA), grey wolf optimization (GWO), Harris hawks optimization (HHO), and genetic algorithm (GA). Several evaluation criteria, including best SSE, worst SSE, mean SSE, and standard deviation, show that the SDO algorithm has merits in terms of PEMFC modeling.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Optimal parameter extraction of proton exchange membrane fuel cell using Henry gas solubility optimization
    Singh, Parminder
    Sandhu, Amanpreet
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (13) : 18212 - 18224
  • [2] Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm
    Yang, Shipin
    Chellali, Ryad
    Lu, Xiaohua
    Li, Lijuan
    Bo, Cuimei
    ENERGY, 2016, 109 : 569 - 577
  • [3] Artificial immune system-based parameter extraction of proton exchange membrane fuel cell
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (04) : 933 - 938
  • [4] Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models
    Xiong, Guojiang
    Zh, Jing
    Shi, Dongyuan
    Yuan, Xufeng
    COMPLEXITY, 2019, 2019
  • [5] Parameter Estimation of Proton Exchange Membrane Fuel Cells Using Chaotic Newton-Raphson-Based Optimizer
    AbouOmar, Mahmoud S.
    Eltayeb, Ahmed
    Al-Quraishi, Maged S.
    El Ferik, Sami
    RESULTS IN ENGINEERING, 2024, 24
  • [6] Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm
    Eduardo Ariza, H.
    Correcher, Antonio
    Sanchez, Carlos
    Perez-Navarro, Angel
    Garcia, Emilio
    ENERGIES, 2018, 11 (08):
  • [7] Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm
    Fahim, Samuel Raafat
    Hasanien, Hany M.
    Turky, Rania A.
    Alkuhayli, Abdulaziz
    Al-Shamma'a, Abdullrahman A.
    Noman, Abdullah M.
    Tostado-Veliz, Marcos
    Jurado, Francisco
    ENERGIES, 2021, 14 (16)
  • [8] A two stage differential evolution algorithm for parameter estimation of proton exchange membrane fuel cell
    Aljaidi, Mohammad
    Agrawal, Sunilkumar P.
    Jangir, Pradeep
    Pandya, Sundaram B.
    Parmar, Anil
    Arpita
    Alkoradees, Ali Fayez
    Trivedi, Bhargavi Indrajit
    Khishe, Mohammad
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Pied kingfisher optimizer for accurate parameter extraction in proton exchange membrane fuel cell
    Kanouni, Badreddine
    Laib, Abdelbaset
    Necaibia, Salah
    Krama, Abdelbasset
    Guerrero, Josep M.
    ENERGY, 2025, 325
  • [10] Optimal Estimation of Proton Exchange Membrane Fuel Cells Parameter Based on Coyote Optimization Algorithm
    Abaza, Amlak
    El-Sehiemy, Ragab A.
    Mahmoud, Karar
    Lehtonen, Matti
    Darwish, Mohamed M. F.
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 16