Magnetically assisted drop-on-demand 3D printing of microstructured multimaterial composites

被引:62
作者
Liu, Wing Chung [1 ]
Chou, Vanessa Hui Yin [1 ]
Behera, Rohit Pratyush [1 ]
Le Ferrand, Hortense [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
THERMAL-CONDUCTIVITY; MECHANICS; PLATELETS;
D O I
10.1038/s41467-022-32792-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
3D printed composites with hierarchically arranged fillers have been challenging to fabricate. Here, the authors make use of magnetically assisted droplet-based printing to 3D print voxelated structures with high filler content, localized control of filler material, and orientation. Microstructured composites with hierarchically arranged fillers fabricated by three-dimensional (3D) printing show enhanced properties along the fillers' alignment direction. However, it is still challenging to achieve good control of the filler arrangement and high filler concentration simultaneously, which limits the printed material's properties. In this study, we develop a magnetically assisted drop-on-demand 3D printing technique (MDOD) to print aligned microplatelet reinforced composites. By performing drop-on-demand printing using aqueous slurry inks while applying an external magnetic field, MDOD can print composites with microplatelet fillers aligned at set angles with high filler concentrations up to 50 vol%. Moreover, MDOD allows multimaterial printing with voxelated control. We showcase the capabilities of MDOD by printing multimaterial piezoresistive sensors with tunable performances based on the local microstructure and composition. MDOD thus creates a large design space to enhance the mechanical and functional properties of 3D printed electronic or sensing devices using a wide range of materials.
引用
收藏
页数:12
相关论文
共 45 条
[1]   Bioinspired large-scale aligned porous materials assembled with dual temperature gradients [J].
Bai, Hao ;
Chen, Yuan ;
Delattre, Benjamin ;
Tomsia, Antoni P. ;
Ritchie, Robert O. .
SCIENCE ADVANCES, 2015, 1 (11)
[2]   Energy dissipation in composites with hybrid nacre-like helicoidal microstructures [J].
Chan, Xin Ying ;
Chua, Clarence ;
Tan, Sharlene ;
Le Ferrand, Hortense .
COMPOSITES PART B-ENGINEERING, 2022, 232
[3]   A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions [J].
Cheng, Lin ;
Qian, Wei ;
Wei, Lei ;
Zhang, Hengjie ;
Zhao, Tingyu ;
Li, Ming ;
Liu, Aiping ;
Wu, Huaping .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (33) :11525-11531
[4]   Bioinspired Microspines for a High-Performance Spray Ti3C2Tx MXene-Based Piezoresistive Sensor [J].
Cheng, Yongfa ;
Ma, Yanan ;
Li, Luying ;
Zhu, Meng ;
Yue, Yang ;
Liu, Weijie ;
Wang, Longfei ;
Jia, Shuangfeng ;
Li, Chen ;
Qi, Tianyu ;
Wang, Jianbo ;
Gao, Yihua .
ACS NANO, 2020, 14 (02) :2145-2155
[5]   3D-Printing of Lightweight Cellular Composites [J].
Compton, Brett G. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2014, 26 (34) :5930-+
[6]   Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics [J].
Cui, Zheng ;
Han, Yiwei ;
Huang, Qijin ;
Dong, Jingyan ;
Zhu, Yong .
NANOSCALE, 2018, 10 (15) :6806-6811
[7]   Engineering 2D Architectures toward High-Performance Micro-Supercapacitors [J].
Da, Yumin ;
Liu, Jinxin ;
Zhou, Lu ;
Zhu, Xiaohui ;
Chen, Xiaodong ;
Fu, Lei .
ADVANCED MATERIALS, 2019, 31 (01)
[8]   Contact line deposits in an evaporating drop [J].
Deegan, RD ;
Bakajin, O ;
Dupont, TF ;
Huber, G ;
Nagel, SR ;
Witten, TA .
PHYSICAL REVIEW E, 2000, 62 (01) :756-765
[9]   Capillary flow as the cause of ring stains from dried liquid drops [J].
Deegan, RD ;
Bakajin, O ;
Dupont, TF ;
Huber, G ;
Nagel, SR ;
Witten, TA .
NATURE, 1997, 389 (6653) :827-829
[10]   Shape anisotropic colloids: synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization [J].
Dugyala, Venkateshwar Rao ;
Daware, Santosh V. ;
Basavaraj, Madivala G. .
SOFT MATTER, 2013, 9 (29) :6711-6725