Quasiperiodic tilings and self-organized criticality

被引:0
作者
Joseph, D [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2000年 / 294卷
关键词
crystals; quasicrystals; random tilings; self-organized criticality;
D O I
10.1016/S0921-5093(00)01141-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-organized critical models are used to describe the 1/f-spectra of rather different physical situations like snow avalanches, noise of electric currents or luminosities of stars. The prototype of these models is the sandpile model of Bak et al. [Phys. Rev. Lett. 59 (1987) 381]. We implement this model on the eight-fold Ammann-Beenker tiling where the model can become either isotropic or anisotropic and investigate its properties. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:685 / 688
页数:4
相关论文
共 22 条
  • [1] [Anonymous], 1987, TILINGS PATTERNS
  • [2] ROOT LATTICES AND QUASI-CRYSTALS
    BAAKE, M
    JOSEPH, D
    KRAMER, P
    SCHLOTTMANN, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19): : L1037 - L1041
  • [3] IDEAL AND DEFECTIVE VERTEX CONFIGURATIONS IN THE PLANAR OCTAGONAL QUASILATTICE
    BAAKE, M
    JOSEPH, D
    [J]. PHYSICAL REVIEW B, 1990, 42 (13): : 8091 - 8102
  • [4] SELF-ORGANIZED CRITICALITY
    BAK, P
    TANG, C
    WIESENFELD, K
    [J]. PHYSICAL REVIEW A, 1988, 38 (01): : 364 - 374
  • [5] SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE
    BAK, P
    TANG, C
    WIESENFELD, K
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (04) : 381 - 384
  • [6] Universality in sandpile models
    BenHur, A
    Biham, O
    [J]. PHYSICAL REVIEW E, 1996, 53 (02) : R1317 - R1320
  • [7] Universality in sandpiles
    Chessa, A
    Stanley, HE
    Vespignani, A
    Zapperi, S
    [J]. PHYSICAL REVIEW E, 1999, 59 (01): : R12 - R15
  • [8] Self-organized criticality as an absorbing-state phase transition
    Dickman, R
    Vespignani, A
    Zapperi, S
    [J]. PHYSICAL REVIEW E, 1998, 57 (05): : 5095 - 5105
  • [9] DROSSEL B, CONDMAT9904075, V2
  • [10] QUASICRYSTALS - A NEW CLASS OF ORDERED STRUCTURES - COMMENT
    ELSER, V
    [J]. PHYSICAL REVIEW LETTERS, 1985, 54 (15) : 1730 - 1730