Electron-hole transport in (La0.9Sr0.1)0.98Ga0.8Mg0.2O3-δ electrolyte:: effects of ceramic microstructure

被引:56
|
作者
Kharton, VV [1 ]
Shaula, AL
Vyshatko, NP
Marques, FMB
机构
[1] Univ Aveiro, UIMC, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal
[2] Belarusian State Univ, Inst Physicochem Problems, Minsk 220080, BELARUS
关键词
lanthanum gallate; solid electrolyte; transference number; ceramic microstructure; electron-hole conductivity;
D O I
10.1016/S0013-4686(03)00247-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The oxygen ion transference numbers of a series of (La0.9Sr0.1)(0.98)Ga0.8Mg0.2O3-delta (LSGM) ceramics with different microstructures, prepared by sintering at 1673 K for 0.5-120 h, were determined at 973-1223 K by a modified Faradaic efficiency technique, taking electrode polarization into account. In air, the transference numbers vary in the range 0.984-0.998, decreasing when temperature or oxygen partial pressure increases. Longer sintering times lead to grain growth and to the dissolution of Sr-rich secondary phases and magnesium oxide, present in trace amounts at the grain boundaries, into the major perovskite phase. This is accompanied with a slight decrease of the total grain-interior resistivity and thermal expansion, while the boundary resistance evaluated from impedance spectroscopy data decreases 3-7 times. The electron-hole transport in LSGM ceramics was found to decrease when the sintering time increases from 0.5 to 40 h, probably indicating a considerable contribution of acceptor-enriched boundaries in the hole conduction. Due to reducing boundary area in single-phase materials, further sintering leads to higher p-type conductivity. The results show that, as for ionic conductivity, electronic transport in solid electrolytes significantly depends on ceramic microstructure. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1817 / 1828
页数:12
相关论文
共 45 条
  • [1] Ionic Conductivity of Chemically Synthesized La0.9Sr0.1Ga0.8Mg0.2O3-δ Solid Electrolyte
    Reis, S. L.
    Muccillo, E. N. S.
    ELECTROCERAMICS VI, 2014, 975 : 81 - 85
  • [2] Influence of A-site nonstoichiometry on microstructure and electrical properties of (La0.9Sr0.1)xGa0.8Mg0.2O3-δ(x=0.97, 1.00, 1.03) electrolyte materials
    Fan Weiyan
    Zhou Defeng
    Zhao Guichun
    Xia Yanjie
    Meng Jian
    SOLID STATE SCIENCES, 2011, 13 (01) : 110 - 114
  • [3] Processing of perovskite La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte by glycine-nitrate combustion method
    Zhang, Q.
    Liu, W. J.
    Wang, J.
    Liu, D.
    Sun, Z. H. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (61) : 31362 - 31369
  • [4] Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.2O2.85 oxygen-ion conductor
    Yao, WH
    Tang, ZL
    Zhang, ZT
    Luo, SH
    Li, J
    Tan, QQ
    RARE METAL MATERIALS AND ENGINEERING, 2004, 33 (03) : 297 - 299
  • [5] Influence of synthesis route on physicochemical properties of nanostructured electrolyte material La0.9Sr0.1Ga0.8Mg0.2O3-δ for IT-SOFCs
    Chaubey, Nityanand
    Wani, B. N.
    Bharadwaj, S. R.
    Chattopadhyaya, M. C.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 112 (01) : 155 - 164
  • [6] Comparison between the electrical conductivities of La0.8Sr0.2Ga0.8Mg0.2O3 and La0.8Sr0.2Ga0.8Mg0.15Co0.05O3
    Wu Ling-Li
    Wang Shi-Zhong
    Liang Ying
    ACTA PHYSICO-CHIMICA SINICA, 2006, 22 (05) : 574 - 578
  • [7] Preparation of La0.9Sr0.1Ga0.8Mg0.2O2.85 ultrafine powder by low temperature combustion synthesis
    Yao, WH
    Zhang, ZT
    Tang, ZL
    Luo, SH
    RARE METAL MATERIALS AND ENGINEERING, 2004, 33 (04) : 421 - 424
  • [8] Dense La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for IT-SOFC's: Sintering study and electrochemical characterization
    Traina, K.
    Henrist, C.
    Vertruyen, B.
    Cloots, R.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (05) : 1493 - 1500
  • [9] Mechanically activated self-propagating high-temperature synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ as an electrolyte for SOFC
    Ishikawa, Hiroyuki
    Enoki, Makiko
    Ishihara, Tatsumi
    Akiyama, Tomohiro
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 488 (01) : 238 - 242
  • [10] Limiting current oxygen sensors with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte and La0.8Sr0.2(Ga0.8Mg0.2)1-xCoxO3-δ dense diffusion barrier
    Xiaofang Zhang
    Tao Liu
    Huimin Zhang
    Jingkun Yu
    Hongbin Jin
    Xiangnan Wang
    Cheng Wang
    Xiang Gao
    Ionics, 2018, 24 : 827 - 832