Quantum wire networks for superconducting quantum-dot superlattices

被引:1
|
作者
Kimura, T
Tamura, H
Kuroki, K
Shiraishi, K
Takayanagi, H
Arita, R
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] Natl Inst Adv Ind Sci & Technol, AIST, Res Consortium Synth Nanofunct Mat Project SYNAF, Tsukuba, Ibaraki 3058568, Japan
[3] Univ Tsukuba, Dept Phys, Tsukuba, Ibaraki 3058271, Japan
[4] Univ Electrocommun, Dept Appl Phys & Chem, Chofu, Tokyo 1828585, Japan
[5] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
关键词
superconductivity; quantum dot superlattices; quantum wire networks; Hubbard models;
D O I
10.1016/S0921-4526(02)02269-X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Quantum wire networks have been proposed for fabricating quantum-dot superlattices with the square and the plaquette lattice structures. These artificial lattices are well represented by Hubbard models with parameters determined by the local density approximation. The superconducting transition temperature T-c (= 90 mK) for the plaquette lattice is more than twice T-c (= 40 mK) for the square lattice and is sufficiently high for achieving superconductivity in experiments. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1395 / 1396
页数:2
相关论文
共 50 条
  • [31] Intrinsic Quantum Dissipation in Superconducting Weak Links
    Galaktionov, Artem V.
    Golubev, Dmitry S.
    Zaikin, Andrei D.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (03) : 715 - 721
  • [32] Quantum Size Effect in Superconducting Aluminum Films
    K. Yu. Arutyunov
    E. A. Sedov
    I. A. Golokolenov
    V. V. Zav’yalov
    G. Konstantinidis
    A. Stavrinidis
    G. Stavrinidis
    I. Vasiliadis
    T. Kekhagias
    G. P. Dimitrakopulos
    F. Komninu
    M. D. Kroitoru
    A. A. Shanenko
    Physics of the Solid State, 2019, 61 : 1559 - 1562
  • [33] Quantum Hall Effect in Graphene with Superconducting Electrodes
    Rickhaus, Peter
    Weiss, Markus
    Marot, Laurent
    Schoenenberger, Christian
    NANO LETTERS, 2012, 12 (04) : 1942 - 1945
  • [34] Superconducting atom chips: towards quantum hybridization
    Hufnagel, Christoph
    Landra, Alessandro
    Chean, Lim Chin
    Yu, Deshui
    Dumkea, Rainer
    QUANTUM PHOTONIC DEVICES, 2017, 10358
  • [35] Intrinsic Quantum Dissipation in Superconducting Weak Links
    Artem V. Galaktionov
    Dmitry S. Golubev
    Andrei D. Zaikin
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 715 - 721
  • [36] Modular assembly of a library of hybrid superlattices and artificial quantum solids
    Zhou, Jingyuan
    Ren, Huaying
    Zhou, Jingxuan
    Wan, Zhong
    Qian, Qi
    Peng, Bosi
    Du, Shuaijing
    Yan, Xingxu
    Pan, Xiaoqing
    Sofer, Zdenek
    Zhang, Ao
    Huang, Yu
    Duan, Xiangfeng
    MATTER, 2024, 7 (03) : 1131 - 1145
  • [37] Two-dimensional In0.4Ga0.6As/GaAs quantum dot superlattices realized by self-organized epitaxial growth
    Lan, S
    Akahane, K
    Jang, KY
    Kawamura, T
    Okada, Y
    Kawabe, M
    Nishimura, T
    Wada, A
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1999, 38 (5A): : 2934 - 2943
  • [38] Influence of quantum confinement on the photoemission from superlattices of optoelectronic materials
    De, D.
    Kumar, A.
    Adhikari, S. M.
    Pahari, S.
    Islam, N.
    Banerjee, P.
    Biswas, S. K.
    Bhattacharya, S.
    Ghatak, K. P.
    SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (03) : 377 - 410
  • [39] Practical Guide to Quantum Phase Transitions in Quantum-Dot-Based Tunable Josephson Junctions
    Kadlecova, A.
    Zonda, M.
    Pokorny, V.
    Novotny, T.
    PHYSICAL REVIEW APPLIED, 2019, 11 (04):
  • [40] Impurity Knight shift in quantum dot Josephson junctions
    Pavesic, Luka
    Pita-Vidal, Marta
    Bargerbos, Arno
    Zitko, Rok
    SCIPOST PHYSICS, 2023, 15 (02):