Quantum wire networks for superconducting quantum-dot superlattices

被引:1
|
作者
Kimura, T
Tamura, H
Kuroki, K
Shiraishi, K
Takayanagi, H
Arita, R
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] Natl Inst Adv Ind Sci & Technol, AIST, Res Consortium Synth Nanofunct Mat Project SYNAF, Tsukuba, Ibaraki 3058568, Japan
[3] Univ Tsukuba, Dept Phys, Tsukuba, Ibaraki 3058271, Japan
[4] Univ Electrocommun, Dept Appl Phys & Chem, Chofu, Tokyo 1828585, Japan
[5] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
关键词
superconductivity; quantum dot superlattices; quantum wire networks; Hubbard models;
D O I
10.1016/S0921-4526(02)02269-X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Quantum wire networks have been proposed for fabricating quantum-dot superlattices with the square and the plaquette lattice structures. These artificial lattices are well represented by Hubbard models with parameters determined by the local density approximation. The superconducting transition temperature T-c (= 90 mK) for the plaquette lattice is more than twice T-c (= 40 mK) for the square lattice and is sufficiently high for achieving superconductivity in experiments. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1395 / 1396
页数:2
相关论文
共 50 条
  • [21] Decoherence sources of a superconducting quantum bit
    Ithier, G.
    Boulant, N.
    Collin, E.
    Meeson, P. J.
    Joyez, P.
    Vion, D.
    Esteve, D.
    Chiarello, F.
    Shnirman, A.
    Makhlin, Y.
    Schoen, G.
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 933 - +
  • [22] Mirage phenomena in superconducting quantum corrals
    Schmid, M
    Kampf, AP
    ANNALEN DER PHYSIK, 2005, 14 (9-10) : 556 - 565
  • [23] State control in superconducting quantum processors
    Vozhakov, V. A.
    Bastrakova, M. V.
    Klenov, N. V.
    Soloviev, I. I.
    Pogosov, W. V.
    Babukhin, D. V.
    Zhukov, A. A.
    Satanin, A. M.
    PHYSICS-USPEKHI, 2022, 65 (05) : 421 - 439
  • [24] A Superconducting Micro-Magnetometer for Quantum Vortex in Superconducting Nanoflakes
    Bi, Xiangyu
    Tian, Feifan
    Chen, Ganyu
    Li, Zeya
    Qin, Feng
    Lv, Yang-Yang
    Huang, Junwei
    Qiu, Caiyu
    Ao, Lingyi
    Chen, Yanbin
    Gu, Genda
    Chen, Yanfeng
    Yuan, Hongtao
    ADVANCED MATERIALS, 2023, 35 (19)
  • [25] Exact boundary modes in an interacting quantum wire
    Rylands, Colin
    PHYSICAL REVIEW B, 2020, 101 (08)
  • [26] Quantum Size Effect in Superconducting Aluminum Films
    Arutyunov, K. Yu.
    Sedov, E. A.
    Golokolenov, I. A.
    Zav'yalov, V. V.
    Konstantinidis, G.
    Stavrinidis, A.
    Stavrinidis, G.
    Vasiliadis, I.
    Kekhagias, T.
    Dimitrakopulos, G. P.
    Komninu, F.
    Kroitoru, M. D.
    Shanenko, A. A.
    PHYSICS OF THE SOLID STATE, 2019, 61 (09) : 1559 - 1562
  • [27] Chain of superconducting loops as a possible quantum register
    Aristov, VV
    Nikulov, AV
    Quantum Informatics 2004, 2004, 5833 : 145 - 156
  • [28] Quantum nondemolition measurement of a superconducting flux qubit
    Takashima, Kohji
    Nishida, Munehiro
    Matsuo, Shigemasa
    Hatakenaka, Noriyuki
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 945 - +
  • [29] Quantum device prospects of superconducting nanodiamond films
    Mtsuko, D.
    Churochkin, D.
    Bhattacharyya, S.
    FOURTH CONFERENCE ON SENSORS, MEMS, AND ELECTRO-OPTIC SYSTEMS, 2017, 10036
  • [30] Floquet Majorana fermions in superconducting quantum dots
    Benito, Monica
    Platero, Gloria
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 74 : 608 - 613