Copolymer-Templated Nickel Oxide for High-Efficiency Mesoscopic Perovskite Solar Cells in Inverted Architecture

被引:58
作者
Sadegh, Faranak [1 ,2 ]
Akin, Seckin [3 ]
Moghadam, Majid [2 ]
Keshavarzi, Reza [2 ]
Mirkhani, Valiollah [2 ]
Ruiz-Preciado, Marco A. [4 ]
Akman, Erdi [5 ]
Zhang, Hong [4 ]
Amini, Mina [2 ]
Tangestaninejad, Shahram [2 ]
Mohammadpoor-Baltork, Iraj [2 ]
Graetzel, Michael [4 ]
Hagfeldt, Anders [1 ]
Tress, Wolfgang [1 ,6 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Photomol Sci, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland
[2] Univ Isfahan, Dept Chem, Esfahan 8174673441, Iran
[3] Karamanoglu Mehmetbey Univ, Dept Met & Mat Engn, TR-70200 Karaman, Turkey
[4] Ecole Polytech Fed Lausanne, Lab Photon & Interfaces, Inst Chem Sci & Engn, CH-1015 Lausanne, Switzerland
[5] Karamanoglu Mehmetbey Univ, Sci & Technol Res & Applicat Ctr, TR-70200 Karaman, Turkey
[6] Zurich Univ Appl Sci, Inst Computat Phys, Wildbachstr 21, CH-8401 Winterthur, Switzerland
关键词
hole transport layers; inverted architecture; mesoscopic PSCs; template-assisted strategy; triblock copolymers; THIN-FILM; MESOPOROUS NIO; PERFORMANCE; LAYER; RECOMBINATION; STABILITY;
D O I
10.1002/adfm.202102237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite the outstanding role of mesoscopic structures on the efficiency and stability of perovskite solar cells (PSCs) in the regular (n-i-p) architecture, mesoscopic PSCs in inverted (p-i-n) architecture have rarely been reported. Herein, an efficient and stable mesoscopic NiOx (mp-NiOx) scaffold formed via a simple and low-cost triblock copolymer template-assisted strategy is employed, and this mp-NiOx film is utilized as a hole transport layer (HTL) in PSCs, for the first time. Promisingly, this approach allows the fabrication of homogenous, crack-free, and robust 150 nm thick mp-NiOx HTLs through a facile chemical approach. Such a high-quality templated mp-NiOx structure promotes the growth of the perovskite film yielding better surface coverage and enlarged grains. These desired structural and morphological features effectively translate into improved charge extraction, accelerated charge transportation, and suppressed trap-assisted recombination. Ultimately, a considerable efficiency of 20.2% is achieved with negligible hysteresis which is among the highest efficiencies for mp-NiOx based inverted PSCs so far. Moreover, mesoscopic devices indicate higher long-term stability under ambient conditions compared to planar devices. Overall, these results may set new benchmarks in terms of performance for mesoscopic inverted PSCs employing templated mp-NiOx films as highly efficient, stable, and easy fabricated HTLs.
引用
收藏
页数:12
相关论文
共 62 条
  • [21] Effect of Cs-Incorporated NiOx on the Performance of Perovskite Solar Cells
    Kim, Hui-Seon
    Seo, Ji-Youn
    Xie, Haibing
    Lira-Cantu, Monica
    Zakeeruddin, Shaik M.
    Gratzel, Michael
    Hagfeldt, Anders
    [J]. ACS OMEGA, 2017, 2 (12): : 9074 - 9079
  • [22] Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous TiO2 Thin Film
    Kim, Yong Joo
    Lee, Yoon Hee
    Lee, Mi Hyeon
    Kim, Hark Jin
    Pan, Jia Hong
    Lim, Goo Il
    Choi, Young S.
    Kim, Kyungkon
    Park, Nam-Gyu
    Lee, Chongmu
    Lee, Wan In
    [J]. LANGMUIR, 2008, 24 (22) : 13225 - 13230
  • [23] ELECTRONIC-STRUCTURE OF NIO
    KUNZ, AB
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (16): : L455 - L460
  • [24] Facile Surface Engineering of Nickel Oxide Thin Film for Enhanced Power Conversion Efficiency of Planar Heterojunction Perovskite Solar Cells
    Lee, Ju Ho
    Noh, Young Wook
    Jin, In Su
    Park, Sang Hyun
    Jung, Jae Woong
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (18): : 15495 - +
  • [25] Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE
    Li, Lin
    Gibson, Elizabeth A.
    Qin, Peng
    Boschloo, Gerrit
    Gorlov, Mikhail
    Hagfeldt, Anders
    Sun, Licheng
    [J]. ADVANCED MATERIALS, 2010, 22 (15) : 1759 - +
  • [26] A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells
    Li, Yang
    Ji, Li
    Liu, Rugeng
    Zhang, Chengxi
    Mak, Chun Hong
    Zou, Xingli
    Shen, Hsin-Hui
    Leu, Shao-Yuan
    Hsu, Hsien-Yi
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (27) : 12842 - 12875
  • [27] Using Soft Polymer Template Engineering of Mesoporous TiO2 Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency
    Lian, Qing
    Mokhtar, Muhamad Z.
    Lu, Dongdong
    Zhu, Mingning
    Jacobs, Janet
    Foster, Andrew B.
    Thomas, Andrew G.
    Spencer, Ben F.
    Wu, Shanglin
    Liu, Chen
    Hodson, Nigel W.
    Smith, Benjamin
    Alkaltham, Abdulaziz
    Alkhudhari, Osama M.
    Watson, Trystan
    Saunders, Brian R.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) : 18578 - 18589
  • [28] Stabilization of Highly Efficient and Stable Phase-Pure FAPbI3Perovskite Solar Cells by Molecularly Tailored 2D-Overlayers
    Liu, Yuhang
    Akin, Seckin
    Hinderhofer, Alexander
    Eickemeyer, Felix T.
    Zhu, Hongwei
    Seo, Ji-Youn
    Zhang, Jiahuan
    Schreiber, Frank
    Zhang, Hong
    Zakeeruddin, Shaik M.
    Hagfeldt, Anders
    Dar, M. Ibrahim
    Graetzel, Michael
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (36) : 15688 - 15694
  • [29] Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%
    Liu, Yuhang
    Akin, Seckin
    Pan, Linfeng
    Uchida, Ryusuke
    Arora, Neha
    Milic, Jovana V.
    Hinderhofer, Alexander
    Schreiber, Frank
    Uhl, Alexander R.
    Zakeeruddin, Shaik M.
    Hagfeldt, Anders
    Dar, M. Ibrahim
    Gratzel, Michael
    [J]. SCIENCE ADVANCES, 2019, 5 (06):
  • [30] High Efficiency and Stability of Inverted Perovskite Solar Cells Using Phenethyl Ammonium Iodide-Modified Interface of NiOx and Perovskite Layers
    Liu, Yuning
    Duan, Jiaji
    Zhang, Jiankai
    Huang, Sumei
    Wei Ou-Yang
    Bao, Qinye
    Sun, Zhuo
    Chen, Xiaohong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 771 - 779