Artificial Intelligence-Based Thyroid Nodule Classification Using Information from Spatial and Frequency Domains

被引:67
作者
Dat Tien Nguyen [1 ]
Tuyen Danh Pham [1 ]
Batchuluun, Ganbayar [1 ]
Yoon, Hyo Sik [1 ]
Park, Kang Ryoung [1 ]
机构
[1] Dongguk Univ, Div Elect & Elect Engn, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
artificial intelligence; thyroid nodule classification; deep learning; Fast Fourier transform; spatial domain; frequency domain; BREAST LESION CLASSIFICATION; ULTRASOUND IMAGES; SEGMENTATION; DIAGNOSIS; FEATURES; TEXTURE; BENIGN;
D O I
10.3390/jcm8111976
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Image-based computer-aided diagnosis (CAD) systems have been developed to assist doctors in the diagnosis of thyroid cancer using ultrasound thyroid images. However, the performance of these systems is strongly dependent on the selection of detection and classification methods. Although there are previous researches on this topic, there is still room for enhancement of the classification accuracy of the existing methods. To address this issue, we propose an artificial intelligence-based method for enhancing the performance of the thyroid nodule classification system. Thus, we extract image features from ultrasound thyroid images in two domains: spatial domain based on deep learning, and frequency domain based on Fast Fourier transform (FFT). Using the extracted features, we perform a cascade classifier scheme for classifying the input thyroid images into either benign (negative) or malign (positive) cases. Through expensive experiments using a public dataset, the thyroid digital image database (TDID) dataset, we show that our proposed method outperforms the state-of-the-art methods and produces up-to-date classification results for the thyroid nodule classification problem.
引用
收藏
页数:24
相关论文
共 56 条
[1]   Data mining framework for breast lesion classification in shear wave ultrasound: A hybrid feature paradigm [J].
Acharya, U. Rajendra ;
Ng, Wei Lin ;
Rahmat, Kartini ;
Sudarshan, Vidya K. ;
Koh, Joel E. W. ;
Tan, Jen Hong ;
Hagiwara, Yuki ;
Yeong, Chai Hong ;
Ng, Kwan Hoong .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 33 :400-410
[2]   Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images [J].
Acharya, U. Rajendra ;
Chowriappa, Pradeep ;
Fujita, Hamido ;
Bhat, Shreya ;
Dua, Sumeet ;
Koh, Joel E. W. ;
Eugene, L. W. J. ;
Kongmebhol, Pailin ;
Ng, K. H. .
KNOWLEDGE-BASED SYSTEMS, 2016, 107 :235-245
[3]   ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, S. Vinitha ;
Molinari, Filippo ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 107 (02) :233-241
[4]   Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScan™ systems [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Molinari, Filippo ;
Garberoglio, Roberto ;
Suri, Jasjit S. .
ULTRASONICS, 2012, 52 (04) :508-520
[5]  
[Anonymous], 2015, Arxiv.Org, DOI DOI 10.3389/FPSYG.2013.00124
[6]   Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study [J].
Bach Xuan Tran ;
Giang Thu Vu ;
Giang Hai Ha ;
Quan-Hoang Vuong ;
Manh-Tung Ho ;
Thu-Trang Vuong ;
Viet-Phuong La ;
Manh-Toan Ho ;
Nghiem, Kien-Cuong P. ;
Huong Lan Thi Nguyen ;
Latkin, Carl A. ;
Tam, Wilson W. S. ;
Cheung, Ngai-Man ;
Nguyen, Hong-Kong T. ;
Ho, Cyrus S. H. ;
Ho, Roger C. M. .
JOURNAL OF CLINICAL MEDICINE, 2019, 8 (03)
[7]   Sensitivity, Specificity, Predictive Values, and Likelihood Ratios [J].
Carvajal, Diana N. ;
Rowe, Peter C. .
PEDIATRICS IN REVIEW, 2010, 31 (12) :511-513
[8]   Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images [J].
Chang, Chuan-Yu ;
Chen, Shao-Jer ;
Tsai, Ming-Fong .
PATTERN RECOGNITION, 2010, 43 (10) :3494-3506
[9]   Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method [J].
Cheng, Ching-Hsue ;
Liu, Wei-Xiang .
JOURNAL OF CLINICAL MEDICINE, 2018, 7 (06)
[10]   Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network [J].
Chi, Jianning ;
Walia, Ekta ;
Babyn, Paul ;
Wang, Jimmy ;
Groot, Gary ;
Eramian, Mark .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :477-486