TIME-ASYMPTOTIC STABILITY FOR FIRST-ORDER SYMMETRIC HYPERBOLIC SYSTEMS OF BALANCE LAWS IN DISSIPATIVE COMPRESSIBLE FLUID DYNAMICS

被引:1
作者
Freistuehler, Heinrich [1 ]
机构
[1] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
关键词
GLOBAL EXISTENCE; SMOOTH SOLUTIONS; EQUATIONS; BEHAVIOR; ENTROPY;
D O I
10.1090/qam/1620
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper identifies a non-(or /iso-)thermal variant of Ruggeri???s 1983 formulation of viscous heat-conductive fluid dynamics as a hyperbolic system of balance laws and shows that both the original model and this variant have (a) time-asymptotically stable equilibria and (b) principal parts deriving from a protopotential: a single scalar function that induces the temporospatial flux as an appropriate part of its Hessian.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 22 条
  • [1] Benzoni-Gavage S., 2007, Oxford Mathematical Monographs
  • [2] Asymptotic Behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy
    Bianchini, Stefano
    Hanouzet, Bernard
    Natalini, Roberto
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (11) : 1559 - 1622
  • [3] BOILLAT G, 1974, CR ACAD SCI A MATH, V278, P909
  • [4] Cattaneo C., 1948, ATTI SEMIN MAT FIS, V3, P83
  • [5] Dafermos C. M., 2000, GRUND MATH WISS, V325, DOI 10.1007/978-3-662-49451-6
  • [6] Causal dissipation for the relativistic dynamics of ideal gases
    Freistuehler, Heinrich
    Temple, Blake
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2201):
  • [7] Freistuhler H., 2020, ARXIV201209059
  • [8] THE EXISTENCE OF SOLITARY WAVES
    FRIEDRICHS, KO
    HYERS, DH
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1954, 7 (03) : 517 - 550
  • [9] DISSIPATIVE RELATIVISTIC FLUID THEORIES OF DIVERGENCE TYPE
    GEROCH, R
    LINDBLOM, L
    [J]. PHYSICAL REVIEW D, 1990, 41 (06): : 1855 - 1861
  • [10] GODUNOV SK, 1961, DOKL AKAD NAUK SSSR+, V139, P521