Time-optimal synthesis of SU(2) transformations for a spin-1/2 system

被引:44
作者
Boozer, A. D. [1 ]
机构
[1] Univ New Mexico, Dept Phys, Albuquerque, NM 87131 USA
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 01期
基金
美国国家科学基金会;
关键词
QUANTUM; 2-LEVEL; DESIGN;
D O I
10.1103/PhysRevA.85.012317
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a quantum control problem involving a spin-1/2 particle in a magnetic field. The magnitude of the field is held constant, and the direction of the field, which is constrained to lie in the x-y plane, serves as a control parameter that can be varied to govern the evolution of the system. We analytically solve for the time dependence of the control parameter that will synthesize a given target SU(2) transformation in the least possible amount of time, and we show that the time-optimal solutions have a simple geometric interpretation in terms of the fiber bundle structure of SU(2). We also generalize our time-optimal solutions to a control problem that includes a constant bias field along the (z) over cap axis and to the case of inhomogeneous control, in which a single control parameter governs the evolution of an ensemble of spin-1/2 systems.
引用
收藏
页数:8
相关论文
共 30 条
[1]  
Baillieul J., 1999, Mathematical control theory
[2]  
Bloch A. M., 2003, NONHOLONOMIC MECH CO
[3]   Optimal control in laser-induced population transfer for two- and three-level quantum systems [J].
Boscain, U ;
Charlot, G ;
Gauthier, JP ;
Guérin, S ;
Jauslin, HR .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2107-2132
[4]   Time minimal trajectories for a spin 1/2 particle in a magnetic field [J].
Boscain, Ugo ;
Mason, Paolo .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
[5]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[6]   Tackling systematic errors in quantum logic gates with composite rotations [J].
Cummins, HK ;
Llewellyn, G ;
Jones, JA .
PHYSICAL REVIEW A, 2003, 67 (04) :7
[7]  
D'Alessandro D, 2000, P AMER CONTR CONF, P3893, DOI 10.1109/ACC.2000.876952
[8]   Optimal control of two-level quantum systems [J].
D'Alessandro, D ;
Dahleh, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (06) :866-876
[9]   Optimal control of atom transport for quantum gates in optical lattices [J].
De Chiara, G. ;
Calarco, T. ;
Anderlini, M. ;
Montangero, S. ;
Lee, P. J. ;
Brown, L. ;
Phillips, W. D. ;
Porto, J. V. .
PHYSICAL REVIEW A, 2008, 77 (05)
[10]   Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles [J].
Grace, Matthew ;
Brif, Constantin ;
Rabitz, Herschel ;
Walmsley, Ian A. ;
Kosut, Robert L. ;
Lidar, Daniel A. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (09) :S103-S125