Generation of a large-scale genomic resource for functional and comparative genomics in Liriodendron tulipifera L.

被引:11
|
作者
Liang, Haiying [1 ]
Ayyampalayam, Saravanaraj [2 ]
Wickett, Norman [3 ,4 ]
Barakat, Abdelali [1 ]
Xu, Yi [1 ]
Landherr, Lena [3 ,4 ,5 ]
Ralph, Paula E. [3 ,4 ]
Jiao, Yuannian [3 ,4 ]
Xu, Tao [1 ]
Schlarbaum, Scott E. [6 ]
Ma, Hong [3 ,4 ,7 ,8 ]
Leebens-Mack, James H. [2 ]
dePamphilis, Claude W. [3 ,4 ]
机构
[1] Clemson Univ, Dept Biochem & Genet, Clemson, SC 29634 USA
[2] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA
[3] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[4] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[5] Penn State Univ, Dept Hort, University Pk, PA 16802 USA
[6] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Inst Agr, Knoxville, TN 37996 USA
[7] Fudan Univ, Sch Life Sci, Inst Plant Biol, Ctr Evolutionary Biol,State Key Lab Genet Engn, Shanghai 200433, Peoples R China
[8] Fudan Univ, Inst Biomed Sci, Shanghai 200032, Peoples R China
基金
美国国家科学基金会; 美国食品与农业研究所;
关键词
EST database; Xylogenesis; Liriodendron; Yellow-poplar; Magnoliaceae; EXPRESSED SEQUENCE TAGS; CINNAMYL-ALCOHOL-DEHYDROGENASE; YELLOW-POPLAR; FLOWER DEVELOPMENT; BASAL ANGIOSPERMS; GENE-EXPRESSION; EST DATABASE; CODON USAGE; EVOLUTION; IDENTIFICATION;
D O I
10.1007/s11295-011-0386-2
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Liriodendron tulipifera L., a member of Magnoliaceae in the order Magnoliales, has been used extensively as a reference species in studies on plant evolution. However, genomic resources for this tree species are limited. We constructed cDNA libraries from ten different types of tissues: premeiotic flower buds, postmeiotic flower buds, open flowers, developing fruit, terminal buds, leaves, cambium, xylem, roots, and seedlings. EST sequences were generated either by 454 GS FLX or Sanger methods. Assembly of almost 2.4 million sequencing reads from all libraries resulted in 137,923 unigenes (132,905 contigs and 4,599 singletons). About 50% of the unigenes had significant matches to publically available plant protein sequences, representing a wide variety of putative functions. Approximately 30,000 simple sequence repeats were identified. More than 97% of the cell wall formation genes in the Cell Wall Navigator and the MAIZEWALL databases are represented. The cinnamyl alcohol dehydrogenase (CAD) homologs identified in the L. tulipifera EST dataset showed different expression levels in the ten tissue types included in this study. In particular, the LtuCAD1 was found to partially recover the stiffness of the floral stems in the Arabidopsis thaliana CAD4 and CAD5 double mutant plants, of the LtuCAD1 in lignin biosynthesis. L. tulipifera genes have greater sequence similarity to homologs from other woody angiosperm species than to non-woody model plants. This large-scale genomic resour"HistryDatesce will be instrumental for gene discovery, cDNA microarray production, and marker-assisted breeding in L. tulipifera, and strengthen this species" role in comparative studies.
引用
收藏
页码:941 / 954
页数:14
相关论文
共 32 条
  • [1] Generation of a large-scale genomic resource for functional and comparative genomics in Liriodendron tulipifera L.
    Haiying Liang
    Saravanaraj Ayyampalayam
    Norman Wickett
    Abdelali Barakat
    Yi Xu
    Lena Landherr
    Paula E. Ralph
    Yuannian Jiao
    Tao Xu
    Scott E. Schlarbaum
    Hong Ma
    James H. Leebens-Mack
    Claude W. dePamphilis
    Tree Genetics & Genomes, 2011, 7 : 941 - 954
  • [2] An EST database for Liriodendron tulipifera L. floral buds: the first EST resource for functional and comparative genomics in Liriodendron
    Haiying Liang
    John E. Carlson
    James H. Leebens-Mack
    P. Kerr Wall
    Lukas A. Mueller
    Matyas Buzgo
    Lena L. Landherr
    Yi Hu
    D. Scott DiLoreto
    Daniel C. Ilut
    Dawn Field
    Steven D. Tanksley
    Hong Ma
    Claude W. dePamphilis
    Tree Genetics & Genomes, 2008, 4 : 419 - 433
  • [3] An EST database for Liriodendron tulipifera L. floral buds:: the first EST resource for functional and comparative genomics in Liriodendron
    Liang, Haiying
    Carlson, John E.
    Leebens-Mack, James H.
    Wall, P. Kerr
    Mueller, Lukas A.
    Buzgo, Matyas
    Landherr, Lena L.
    Hu, Yi
    DiLoreto, D. Scott
    Ilut, Daniel C.
    Field, Dawn
    Tanksley, Steven D.
    Ma, Hong
    dePamphilis, Claude W.
    TREE GENETICS & GENOMES, 2008, 4 (03) : 419 - 433
  • [4] A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    Schäfer, J
    Strimmer, K
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2005, 4 : 1 - 30
  • [5] Large-scale comparative genomics to refine the organization of the global Salmonella enterica population structure
    Liu, Chao Chun
    Hsiao, William W. L.
    MICROBIAL GENOMICS, 2022, 8 (12):
  • [6] A high resolution map of mammalian X chromosome fragile regions assessed by large-scale comparative genomics
    Prada, Carlos Fernando
    Laissue, Paul
    MAMMALIAN GENOME, 2014, 25 (11-12) : 618 - 635
  • [7] A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies
    Thakur, Shalabh
    Guttman, David S.
    BMC BIOINFORMATICS, 2016, 17
  • [8] Generation, Annotation and Analysis of First Large-Scale Expressed Sequence Tags from Developing Fiber of Gossypium barbadense L.
    Yuan, Daojun
    Tu, Lili
    Zhang, Xianlong
    PLOS ONE, 2011, 6 (07):
  • [9] A large-scale comparative genomics study reveals niche-driven and within-sample intra-species functional diversification in Lacticaseibacillus rhamnosus
    You, Lijun
    Lv, Ruirui
    Jin, Hao
    Ma, Teng
    Zhao, Zhixin
    Kwok, Lai-Yu
    Sun, Zhihong
    FOOD RESEARCH INTERNATIONAL, 2023, 173
  • [10] Redefining the differences in gene content between Yersinia pestis and Yersinia pseudotuberculosis using large-scale comparative genomics
    Califf, Katy J.
    Keim, Paul S.
    Wagner, David M.
    Sahl, Jason W.
    MICROBIAL GENOMICS, 2015, 1 (02):