An in-situ simultaneous SAXS and WAXS survey of PEBAX® nanocomposites reinforced with organoclay and POSS during uniaxial deformation

被引:34
作者
Kamal, Tahseen [1 ]
Park, Soo-Young [1 ]
Choi, Myong-Chan [2 ]
Chang, Young-Wook [2 ,3 ]
Chuang, Wei-Tsung [4 ]
Jeng, U-Ser [4 ]
机构
[1] Kyungpook Natl Univ, Dept Polymer Sci, Taegu 702701, South Korea
[2] Hanyang Univ, Dept Bionano Technol, Ansan 426791, South Korea
[3] Hanyang Univ, Dept Chem Engn, Ansan 426791, South Korea
[4] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan
基金
新加坡国家研究基金会;
关键词
Poly(ether-b-amide); Organoclay; Trisilinolphenyl-POSS; THERMOPLASTIC POLYURETHANE; SILICATE NANOCOMPOSITES; PHASE-TRANSITIONS; POLYAMIDE; 12; NYLON-6; ELASTOMERS; POLYMERS; BEHAVIOR; CRYSTALLIZATION; MORPHOLOGY;
D O I
10.1016/j.polymer.2012.05.037
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(ether-block-amide) (PEBA), commercially known as PEBAX (R), nanocomposites filled with organically modified clay (Cloisite 30B) and trisilinolphenyl-polyhedral oligomeric silsesquioxane (tsp-POSS) were prepared by a melt mixing method, respectively. The structures of the nanocomposites were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and in-situ simultaneous small and wide angle X-ray scatterings (SAXS and WAXS) during uniaxial deformation. The FT-IR spectra showed the hydrogen bonding between the fillers and the PEBA which helped to disperse the fillers in the polymer matrix. The crystallinities and mechanical properties of the nanocomposites were improved compared to the neat polymer. Their origins were studied with an in-situ simultaneous SAXS and WAXS technique during the uniaxial deformation. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3360 / 3367
页数:8
相关论文
共 32 条
  • [1] Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: Structure and volume fraction effects
    Alexandre, B.
    Langevin, D.
    Mederic, P.
    Aubry, T.
    Couderc, H.
    Nguyen, Q. T.
    Saiter, A.
    Marais, S.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2009, 328 (1-2) : 186 - 204
  • [2] Atanasoska LE, 2010, POLYM INORGANIC COMP
  • [3] Polymorphic superelasticity in semicrystalline polymers
    Auriemma, Finizia
    De Rosa, Claudio
    Esposito, Simona
    Mitchell, Geoffrey R.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (23) : 4325 - 4328
  • [4] Bourbigot S, 2006, MACROMOL SYMP, V233, P180, DOI [10.1002/masy.200690016, 10.1002/masy.200650123]
  • [5] The Deformability of Polymers: The Role of Disordered Mesomorphic Crystals and Stress-Induced Phase Transformations
    De Rosa, Claudio
    Auriemma, Finizia
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (05) : 1207 - 1211
  • [6] Influence of processing conditions on sensitivity of conductive polymer composites to organic solvent vapours
    Feller, JF
    Langevin, D
    Marais, S
    [J]. SYNTHETIC METALS, 2004, 144 (01) : 81 - 88
  • [7] Segmented polyurethane nanocomposites: Impact of controlled particle size nanofillers on the morphological response to uniaxial deformation
    Finnigan, B
    Jack, K
    Campbell, K
    Halley, P
    Truss, R
    Casey, P
    Cookson, D
    King, S
    Martin, D
    [J]. MACROMOLECULES, 2005, 38 (17) : 7386 - 7396
  • [8] Crystallization behavior of nylon 6 nanocomposites
    Fornes, TD
    Paul, DR
    [J]. POLYMER, 2003, 44 (14) : 3945 - 3961
  • [9] Synthesis and characterization of transparent alumina reinforced polycarbonate nanocomposite
    Hakimelahi, Hamid R.
    Hu, Ling
    Rupp, Bradley B.
    Coleman, Maria R.
    [J]. POLYMER, 2010, 51 (12) : 2494 - 2502
  • [10] Hoshino KlaS, 1973, J POLYM SCI POL PHYS, V11, P1077