Integrability for solutions to some anisotropic elliptic equations

被引:23
作者
Leonetti, Francesco [1 ]
Siepe, Francesco [1 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67100 Laquila, Italy
关键词
Integrability; Solution; Anisotropic; Elliptic; Equation; GROWTH-CONDITIONS; REGULARITY;
D O I
10.1016/j.na.2011.11.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary value problem {(n)Sigma D-i=i(i)(a(i)(x, Du(x))) = 0, x is an element of Omega; u(x) = u(*)(x), x is an element of partial derivative Omega. We show that, higher integrability of the boundary datum u(*) forces solutions u to have higher integrability as well. Assumptions on a(i)(x, z) are suggested by the Euler equation of the anisotropic functional. integral(Omega)(vertical bar D(1)u|(p1) + vertical bar D(2)u|(p2) + ... + |D(n)u|(pn))dx. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2867 / 2873
页数:7
相关论文
共 11 条
[1]   PARTIAL REGULARITY UNDER ANISOTROPIC (P, Q) GROWTH-CONDITIONS [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (01) :46-67
[2]  
Acerbi E., 1997, COMMUNICATION
[3]  
[Anonymous], 1969, QUELQUES METHODES RE
[4]  
[Anonymous], 1998, ATTI SEMIN MAT FIS
[5]  
[Anonymous], 1966, SEMIN MATH SUPERIEUR
[6]   Sharp regularity for functionals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (01) :5-55
[7]   Regularity for minimizers of functionals with p-q growth [J].
Esposito, Luca ;
Leonetti, Francesco ;
Mingione, Giuseppe .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02) :133-148
[8]  
Ladyzhenskaya O.A., 1983, LINEAR QUASILINEAR E
[9]  
MARCELLINI P, 1989, ARCH RATION MECH AN, V105, P267
[10]  
TANG Q, 1993, ANN MAT PUR APPL, V164, P77