SUBPIXEL MAPPING OF HYPERSPECTRAL IMAGES BASED ON COLLABORATIVE REPRESENTATION

被引:2
作者
Xue, Xiaoqin [1 ]
Zhang, Yifan [1 ]
Zhao, Tuo [1 ]
He, Mingyi [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Shaanxi Key Lab Informat Acquisit & Proc, Xian 710129, Peoples R China
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
基金
中国国家自然科学基金;
关键词
Classification; collaborative representation; hyperspectral; subpixel mapping; CLASSIFICATION;
D O I
10.1109/IGARSS.2016.7729853
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Subpixel mapping with a low resolution hyperspectral image as the only input is widely applicable due to the fact that auxiliary image with high spatial resolution is not always available in practice. In this paper, to extract spatial information without auxiliary image, the upscaled low resolution hyperspectral image is classified using collaborative representation-based classifier. Another subpixel scale classification map is available by the combination of collaborative representation-based classification, spectral unmixing and subpixel spatial attraction model. To achieve better classification performance, decision fusion is employed to elect approximate class label from these two initial classification maps for each subpixel by the voting of the neighboring subpixels. Experimental results illustrate that the proposed approach is more promising in extracting and utilizing spatial information compared with some state-of-the-art subpixel mapping approaches.
引用
收藏
页码:3298 / 3301
页数:4
相关论文
共 50 条
[21]   Subpixel mapping of raw hyperspectral imagery [J].
Wang, Liguo ;
Zhao, ChunHui ;
Zhang, Ye .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 :1770-1773
[22]   HYPERSPECTRAL IMAGE SUBPIXEL MAPPING USING GETIS INDEX [J].
Akhter, Muhammad Awais ;
Mahmood, Zahid ;
Scheunders, Paul .
2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
[23]   Multi-Resolution Collaborative Fusion of SAR, Multispectral and Hyperspectral Images for Coastal Wetlands Mapping [J].
Yuan, Yi ;
Meng, Xiangchao ;
Sun, Weiwei ;
Yang, Gang ;
Wang, Lihua ;
Peng, Jiangtao ;
Wang, Yumiao .
REMOTE SENSING, 2022, 14 (14)
[24]   Metric learning and local enhancement based collaborative representation for hyperspectral image classification [J].
Jiang Li ;
Ning Wang ;
Sai Gong ;
Xinwei Jiang ;
Dongmei Zhang .
Multimedia Tools and Applications, 2024, 83 :42459-42484
[25]   Metric learning and local enhancement based collaborative representation for hyperspectral image classification [J].
Li, Jiang ;
Wang, Ning ;
Gong, Sai ;
Jiang, Xinwei ;
Zhang, Dongmei .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) :42459-42484
[26]   Efficient Probabilistic Collaborative Representation-Based Classifier for Hyperspectral Image Classification [J].
Xu, Yan ;
Du, Qian ;
Li, Wei ;
Younan, Nicolas H. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (11) :1746-1750
[27]   GABOR-FILTERING-BASED PROBABILISTIC COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION [J].
Xu, Yan ;
Du, Qian ;
Li, Wei ;
Younan, Nicolas .
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, :5081-5084
[28]   Anomaly detection using morphology-based collaborative representation in hyperspectral imagery [J].
Imani, Maryam .
EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) :457-471
[29]   Using Linear Spectral Unmixing for Subpixel Mapping of Hyperspectral Imagery: A Quantitative Assessment [J].
Xu, Xiong ;
Tong, Xiaohua ;
Plaza, Antonio ;
Zhong, Yanfei ;
Xie, Huan ;
Zhang, Liangpei .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) :1589-1600
[30]   Subpixel-Pixel-Superpixel-Based Multiview Active Learning for Hyperspectral Images Classification [J].
Li, Yu ;
Lu, Ting ;
Li, Shutao .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :4976-4988