SUBPIXEL MAPPING OF HYPERSPECTRAL IMAGES BASED ON COLLABORATIVE REPRESENTATION

被引:2
|
作者
Xue, Xiaoqin [1 ]
Zhang, Yifan [1 ]
Zhao, Tuo [1 ]
He, Mingyi [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Shaanxi Key Lab Informat Acquisit & Proc, Xian 710129, Peoples R China
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
基金
中国国家自然科学基金;
关键词
Classification; collaborative representation; hyperspectral; subpixel mapping; CLASSIFICATION;
D O I
10.1109/IGARSS.2016.7729853
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Subpixel mapping with a low resolution hyperspectral image as the only input is widely applicable due to the fact that auxiliary image with high spatial resolution is not always available in practice. In this paper, to extract spatial information without auxiliary image, the upscaled low resolution hyperspectral image is classified using collaborative representation-based classifier. Another subpixel scale classification map is available by the combination of collaborative representation-based classification, spectral unmixing and subpixel spatial attraction model. To achieve better classification performance, decision fusion is employed to elect approximate class label from these two initial classification maps for each subpixel by the voting of the neighboring subpixels. Experimental results illustrate that the proposed approach is more promising in extracting and utilizing spatial information compared with some state-of-the-art subpixel mapping approaches.
引用
收藏
页码:3298 / 3301
页数:4
相关论文
共 50 条
  • [11] Subpixel Mapping of Hyperspectral Images Using a Labeled-Unlabeled Hybrid Endmember Library and Abundance Optimization
    Zhang, Yifan
    Wang, Ting
    Mei, Shaohui
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (5036-5047) : 5036 - 5047
  • [12] Hyperspectral and LiDAR Data Fusion Using Collaborative Representation
    Du, Qian
    Ball, John E.
    Ge, Chiru
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXVI, 2020, 11392
  • [13] Collaborative Representation for Hyperspectral Anomaly Detection
    Li, Wei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03): : 1463 - 1474
  • [14] Attraction-Repulsion Model-Based Subpixel Mapping of Multi-/Hyperspectral Imagery
    Tong, Xiaohua
    Zhang, Xue
    Shan, Jie
    Xie, Huan
    Liu, Miaolong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 2799 - 2814
  • [15] Tangent Distance-Based Collaborative Representation for Hyperspectral Image Classification
    Su, Hongjun
    Zhao, Bo
    Du, Qian
    Sheng, Yehua
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (09) : 1236 - 1240
  • [16] Nonlocal Total Variation Subpixel Mapping for Hyperspectral Remote Sensing Imagery
    Feng, Ruyi
    Zhong, Yanfei
    Wu, Yunyun
    He, Da
    Xu, Xiong
    Zhang, Liangpei
    REMOTE SENSING, 2016, 8 (03)
  • [17] Band selection-based collaborative representation for anomaly detection in hyperspectral images
    Zhu D.
    Du B.
    Zhang L.
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (04): : 427 - 438
  • [18] CNN based sub-pixel mapping for hyperspectral images
    Arun, P. V.
    Buddhiraju, K. M.
    Porwal, A.
    NEUROCOMPUTING, 2018, 311 : 51 - 64
  • [19] A hypothesis independent subpixel target detector for hyperspectral Images
    Du, Bo
    Zhang, Yuxiang
    Zhang, Liangpei
    Zhang, Lefei
    SIGNAL PROCESSING, 2015, 110 : 244 - 249
  • [20] Utilizing Multiple Subpixel Shifted Images in Subpixel Mapping With Image Interpolation
    Wang, Qunming
    Shi, Wenzhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (04) : 798 - 802