Engineering plasticization resistant gas separation membranes using metal-organic nanocapsules

被引:22
作者
Wang, Hongliang [1 ]
Zhang, Kexin [1 ]
Li, Jerry Pui Ho [1 ,4 ]
Huang, Jingyu [2 ]
Yuan, Biao [1 ]
Zhang, Chen [3 ]
Yu, Yi [1 ]
Yang, Yong [1 ]
Lee, Yongjin [1 ]
Li, Tao [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Univ Calif Berkeley, Dept Mat Sci, Berkeley, CA 94720 USA
[3] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[4] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT9 5AG, Antrim, North Ireland
基金
中国国家自然科学基金;
关键词
MIXED-MATRIX MEMBRANES; CROSS-LINKING; FREE-VOLUME; POLYMERS; PERMEATION; TRANSPORT; PERMEABILITY; GLASSY; PERFORMANCE; CO2;
D O I
10.1039/d0sc01498b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Membrane technologies hold great potential for industrial gas separation. Nevertheless, plasticization, a common phenomenon that is responsible for the loss of gas pair selectivity and the decrease of membrane lifespan, is one of the top challenges withholding the deployment of advanced membrane materials in realistic applications. Here, we report a highly generalizable approach, that utilizes PgC(5)Cu, a copper metal-organic nanocapsule (MONC) containing 24 open metal sites (OMSs) as a multi-dentate node to coordinatively crosslink polymers. By adding merely 1-3 wt% of PgC(5)Cu, a wide range of carbonyl group-containing polymers can be effectively crosslinked. Through rigorous dissolution tests, molecular dynamic simulations, and in situ FT-IR spectroscopy, we qualitatively and quantitatively unveiled the coordinative binding nature at the polymer-MONC interface. As a result, we produced a series of composite membranes showing near complete plasticization resistance to CO2, C2H4, and C2H6 under high pressure with no loss of mechanical and gas transport properties.
引用
收藏
页码:4687 / 4694
页数:8
相关论文
共 50 条
[1]   CO2-CH4 permeation in high zeolite 4A loading mixed matrix membranes [J].
Adams, Ryan T. ;
Lee, Jong Suk ;
Bae, Tae-Hyun ;
Ward, Jason K. ;
Johnson, J. R. ;
Jones, Christopher W. ;
Nair, Sankar ;
Koros, William J. .
JOURNAL OF MEMBRANE SCIENCE, 2011, 367 (1-2) :197-203
[2]  
Bachman JE, 2016, NAT MATER, V15, P845, DOI [10.1038/NMAT4621, 10.1038/nmat4621]
[3]   Plasticization-resistant Ni2(dobdc)/polyimide composite membranes for the removal of CO2 from natural gas [J].
Bachman, Jonathan E. ;
Long, Jeffrey R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :2031-2036
[4]   Natural gas processing with membranes: An overview [J].
Baker, Richard W. ;
Lokhandwala, Kaaeid .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (07) :2109-2121
[5]   Gas Separation Membrane Materials: A Perspective [J].
Baker, Richard W. ;
Low, Bee Ting .
MACROMOLECULES, 2014, 47 (20) :6999-7013
[6]   Future directions of membrane gas separation technology [J].
Baker, RW .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (06) :1393-1411
[7]   An intermolecular (H2O)10 cluster in a solid-state supramolecular complex [J].
Barbour, LJ ;
Orr, GW ;
Atwood, JL .
NATURE, 1998, 393 (6686) :671-673
[8]   Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity [J].
Carta, Mariolino ;
Bernardo, Paola ;
Clarizia, Gabriele ;
Jansen, Johannes C. ;
McKeown, Neil B. .
MACROMOLECULES, 2014, 47 (23) :8320-8327
[9]   Mixed-Matrix Membranes Formed from Multi-Dimensional Metal-Organic Frameworks for Enhanced Gas Transport and Plasticization Resistance [J].
Chi, Won Seok ;
Sundell, Benjamin J. ;
Zhang, Ke ;
Harrigan, Daniel J. ;
Hayden, Steven C. ;
Smith, Zachary P. .
CHEMSUSCHEM, 2019, 12 (11) :2355-2360
[10]   Metallo-supramolecular capsules [J].
Dalgarno, Scott J. ;
Power, Nicholas P. ;
Atwood, Jerry L. .
COORDINATION CHEMISTRY REVIEWS, 2008, 252 (8-9) :825-841