Dynamic localized phase transformation at stacking faults during creep deformation and new criterion for superalloy design

被引:7
作者
Feng, Longsheng [1 ]
Egan, Ashton [1 ]
Xue, Fei [2 ]
Marquis, Emmanuelle [2 ]
Mills, Michael J. [1 ]
Wang, Yunzhi [1 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, 2041 Coll Rd, Columbus, OH 43210 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Dow Bldg 2300 Hayward St, Ann Arbor, MI 48109 USA
关键词
SINGLE-CRYSTAL SUPERALLOYS; INTERMEDIATE TEMPERATURES; ELEMENTAL SEGREGATION; ANTIPHASE BOUNDARIES; PLANAR DEFECTS; CO-BASE; NI; ENERGIES; 1ST-PRINCIPLES; NI3AL;
D O I
10.1557/s43579-022-00251-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel phenomenon, dynamic localized phase transformation (LPT) at stacking faults during deformation, has been observed in various Ni-base and Co-base superalloys and found to play a critical role in determining the creep performance of these alloys. In this article, we review recent experiment observations of LPT, thermodynamic analysis on the fundamentals of LPT, first-principles calculations to link LPT to mechanical deformation, and computational tools and databases required to predict LPT. We discussed the generality of the LPT phenomenon, various challenges in quantitative predictions of LPT, LPT-strengthening and LPT-softening, and opportunities offered by the LPT mechanism in the design of the next generation of LPT-strengthened superalloys.
引用
收藏
页码:991 / 1001
页数:11
相关论文
共 70 条
[1]  
[Anonymous], 2011, MULTIPLE SCANNING TR
[2]   Machine Learning Enabled Prediction of Stacking Fault Energies in Concentrated Alloys [J].
Arora, Gaurav ;
Aidhy, Dilpuneet S. .
METALS, 2020, 10 (08) :1-17
[3]   On the Temperature Limits of Ni-Based Superalloys [J].
Barba, Daniel ;
Egan, Ashton ;
Kench, Steve ;
Smith, Tim M. ;
Mills, Michael J. ;
Reed, Roger C. .
TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, :785-792
[4]   Chromium and tantalum site substitution patterns in Ni3Al (L12) γ′-precipitates [J].
Booth-Morrison, Christopher ;
Mao, Zugang ;
Noebe, Ronald D. ;
Seidman, David N. .
APPLIED PHYSICS LETTERS, 2008, 93 (03)
[5]   First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys [J].
Breidi, A. ;
Allen, J. ;
Mottura, A. .
ACTA MATERIALIA, 2018, 145 :97-108
[6]   CRITICAL-POINT WETTING [J].
CAHN, JW .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (08) :3667-3672
[7]   Grain boundary complexions [J].
Cantwell, Patrick R. ;
Tang, Ming ;
Dillon, Shen J. ;
Luo, Jian ;
Rohrer, Gregory S. ;
Harmer, Martin P. .
ACTA MATERIALIA, 2014, 62 :1-48
[8]   Correlation analysis of materials properties by machine learning: illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys [J].
Chong, Xiaoyu ;
Shang, Shun-Li ;
Krajewski, Adam M. ;
Shimanek, John D. ;
Du, Weihang ;
Wang, Yi ;
Feng, Jing ;
Shin, Dongwon ;
Beese, Allison M. ;
Liu, Zi-Kui .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (29)
[9]   Effect of Nb Alloying Addition on Local Phase Transformation at Microtwin Boundaries in Nickel-Based Superalloys [J].
Egan, A. J. ;
Rao, Y. ;
Viswanathan, G. B. ;
Smith, T. M. ;
Ghazisaeidi, M. ;
Tin, S. ;
Mills, M. J. .
SUPERALLOYS 2020, 2020, :640-650
[10]   Precipitate Shearing, Fault Energies, and Solute Segregation to Planar Faults in Ni-, CoNi-, and Co-Base Superalloys [J].
Eggeler, Y. M. ;
Vamsi, K. V. ;
Pollock, T. M. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 51, 2021, 2021, 51 :209-240