Laser Direct Writing Assisted Fabrication of Skin Compatible Metal Electrodes

被引:16
作者
Gao, Liang [1 ,2 ]
Wang, Xiaohan [1 ,2 ]
Dai, Wentao [1 ,2 ]
Bagheri, Robabeh [1 ,2 ]
Wang, Chen [1 ,2 ]
Tian, Zikang [1 ,2 ]
Dai, Xiao [1 ,2 ]
Zou, Guifu [1 ,2 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Sch Energy, Suzhou 215006, Peoples R China
[2] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
来源
ADVANCED MATERIALS TECHNOLOGIES | 2020年 / 5卷 / 05期
基金
中国国家自然科学基金;
关键词
electro-deposition; laser direct writing; skin-compatible electrodes; wearable electronics; SILVER NANOWIRES; HIGH-PERFORMANCE; THIN-FILMS; TRANSPARENT; CONDUCTIVITY;
D O I
10.1002/admt.202000012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Skin-compatible electrodes have been studied intensively for its application in wearable electronics. To satisfy various deformations of electronic skin, it requires to fabricate a highly conductive, mechanically stable, flexible, and stretchable electrode. Here, a feasible laser direct writing (LDW) process is carried out to fabricate micro-spring structured metal electrodes. The metal electrodes show high conductivity and transparency with sheet resistance of 4.8 ohm per square and at transmittance of 83%. It is worthy of noting that, the metal electrodes have an excellent mechanical-electrical stability, where stretching over 75% and bending over 5000 times induces resistance variance less than 5% and 2%, respectively. The excellent mechanical and electrical behavior of the micro-spring metal electrodes are promising to be useful for wearable electronics. The LDW process may facilitate the design and prototype of the skin compatible metal electrodes in the coming future.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Biaxially stretchable "Wavy" silicon nanomembranes [J].
Choi, Won Mook ;
Song, Jizhou ;
Khang, Dahl-Young ;
Jiang, Hanqing ;
Huang, Yonggang Y. ;
Rogers, John A. .
NANO LETTERS, 2007, 7 (06) :1655-1663
[2]   Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors [J].
Cui, Fan ;
Yu, Yi ;
Dou, Letian ;
Sun, Jianwei ;
Yang, Qin ;
Schildknecht, Christian ;
Schierle-Arndt, Kerstin ;
Yang, Peidong .
NANO LETTERS, 2015, 15 (11) :7610-7615
[3]   Ultra-smooth glassy graphene thin films for flexible transparent circuits [J].
Dai, Xiao ;
Wu, Jiang ;
Qian, Zhicheng ;
Wang, Haiyan ;
Jian, Jie ;
Cao, Yingjie ;
Rummeli, Mark H. ;
Yi, Qinghua ;
Liu, Huiyun ;
Zou, Guifu .
SCIENCE ADVANCES, 2016, 2 (11)
[4]   Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing [J].
Duan, YongQing ;
Huang, YongAn ;
Yin, ZhouPing ;
Bu, NingBin ;
Dong, WenTao .
NANOSCALE, 2014, 6 (06) :3289-3295
[5]   Laser Direct Writing of Ultrahigh Sensitive SiC-Based Strain Sensor Arrays on Elastomer toward Electronic Skins [J].
Gao, Yang ;
Li, Qi ;
Wu, Rongyao ;
Sha, Jin ;
Lu, Yongfeng ;
Xuan, Fuzhen .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)
[6]   High-conductivity elastomeric electronics [J].
Gray, DS ;
Tien, J ;
Chen, CS .
ADVANCED MATERIALS, 2004, 16 (05) :393-+
[7]   Carbon Nanotubes-Adsorbed Electrospun PA66 Nanofiber Bundles with Improved Conductivity and Robust Flexibility [J].
Guan, Xiaoyang ;
Zheng, Guoqiang ;
Dai, Kun ;
Liu, Chuntai ;
Yan, Xingru ;
Shen, Changyu ;
Guo, Zhanhu .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) :14150-14159
[8]   Nanoscale Ni/Au wire grids as transparent conductive electrodes in ultraviolet light-emitting diodes by laser direct writing [J].
Gui, Chengqun ;
Ding, Xinghuo ;
Zhou, Shengjun ;
Gao, Yilin ;
Liu, Xingtong ;
Liu, Sheng .
OPTICS AND LASER TECHNOLOGY, 2018, 104 :112-117
[9]   Transparent conductive hybrid thin-films based on copper-mesh/conductive polymer for ITO-Free organic light-emitting diodes [J].
Han, Joo Won ;
Jung, Bogwang ;
Kim, Dong Woo ;
Lim, Kwon Taek ;
Jeong, Se-Young ;
Kim, Yong Hyun .
ORGANIC ELECTRONICS, 2019, 73 :13-17
[10]   Reliable stretchable gold interconnects in biocompatible elastomers [J].
Jahanshahi, A. ;
Salvo, P. ;
Vanfleteren, J. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2012, 50 (11) :773-776