In Situ Formed Shields Enabling Li2CO3-Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries

被引:181
作者
Wu, Jian-Fang [1 ]
Pu, Bo-Wei [2 ]
Wang, Da [2 ]
Shi, Si-Qi [2 ]
Zhao, Ning [3 ]
Guo, Xiangxin [3 ]
Guo, Xin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Lab Solid State Ion, Wuhan 430074, Hubei, Peoples R China
[2] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[3] Qingdao Univ, Coll Phys, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
solid electrolytes; dendritic Li; interfaces; Li7La3Zr2O12; Li-metal battery; INTERFACIAL RESISTANCE; STATE ELECTROLYTE; ION CONDUCTION; LITHIUM; DEPOSITION; GROWTH; ANODE;
D O I
10.1021/acsami.8b18356
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Introduction of inorganic solid electrolytes is believed to be an ultimate strategy to dismiss dendritic Li in high-energy Li-metal batteries (LMBs), and garnet-type Li7La3Zr2O12 (LLZO) electrolytes are impressive candidates. However, the current density for stable Li plating/stripping in LLZO is still quite limited. Here, we create in situ formed Li-deficient shields by the high-temperature calcination at 900 degrees C. By this novel process, the formation of Li2CO3 on LLZO is restrained, and then we successfully obtain Li2CO3-free LLZO after removing the Li-deficient compounds. Without any surface modification, Li2CO3-free LLZO shows an intrinsic "lithiophilicity" characteristic. The contact angles of metallic Li on LLZO garnets are assessed by the first-principle calculation to confirm the lithiophilicity characteristic of LLZO electrolytes. The wetting of metallic Li on the Li2CO3-free LLZO surface leads to a continuous and tight Li/LLZO interface, resulting in an ultralow interfacial resistance of 49 Omega cm(2) and a homogeneous current distribution in the charge/discharge processes of LMBs. Consequently, the current density for the stable Li plating/stripping in LLZO increases to 900 mu A cm(-2) at 60 degrees C, one of the highest current density for LMBs based on garnet-type LLZO electrolytes. Our findings not only offer insight into the lithiophilicity characteristics of LLZO electrolytes to suppress dendritic Li at high current densities but also expand the avenue toward high-performance, safe, and long-life energy storage systems.
引用
收藏
页码:898 / 905
页数:8
相关论文
共 51 条
[21]  
Lin DC, 2017, NAT NANOTECHNOL, V12, P194, DOI [10.1038/nnano.2017.16, 10.1038/NNANO.2017.16]
[22]  
Lin DC, 2016, NAT NANOTECHNOL, V11, P626, DOI [10.1038/NNANO.2016.32, 10.1038/nnano.2016.32]
[23]   Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer [J].
Liu, Kai ;
Pei, Allen ;
Lee, Hye Ryoung ;
Kong, Biao ;
Liu, Nian ;
Lin, Dingchang ;
Liu, Yayuan ;
Liu, Chong ;
Hsu, Po-chun ;
Bao, Zhenan ;
Cui, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (13) :4815-4820
[24]   Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance [J].
Liu, Ting ;
Ren, Yaoyu ;
Shen, Yang ;
Zhao, Shi-Xi ;
Lin, Yuanhua ;
Nan, Ce-Wen .
JOURNAL OF POWER SOURCES, 2016, 324 :349-357
[25]   Influence of α-Al2O3 (0001) surface reconstruction on wettability of Al/Al2O3 interface: A first-principle study [J].
Liu, Yang ;
Ning, Xiao-Shan .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 85 :193-199
[26]   Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer [J].
Luo, Wei ;
Gong, Yunhui ;
Zhu, Yizhou ;
Li, Yiju ;
Yao, Yonggang ;
Zhang, Ying ;
Fu, Kun ;
Pastel, Glenn ;
Lin, Chuan-Fu ;
Mo, Yifei ;
Wachsman, Eric D. ;
Hu, Liangbing .
ADVANCED MATERIALS, 2017, 29 (22)
[27]   Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte [J].
Luo, Wei ;
Gong, Yunhui ;
Zhu, Yizhou ;
Fu, Kun Kelvin ;
Dai, Jiaqi ;
Lacey, Steven D. ;
Wang, Chengwei ;
Liu, Boyang ;
Han, Xiaogang ;
Mo, Yifei ;
Wachsman, Eric D. ;
Hu, Liangbing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (37) :12258-12262
[28]   Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J].
Murugan, Ramaswamy ;
Thangadurai, Venkataraman ;
Weppner, Werner .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) :7778-7781
[29]   Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N [J].
Park, Kyusung ;
Goodenough, John B. .
ADVANCED ENERGY MATERIALS, 2017, 7 (19)
[30]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865