Machine Learning Analysis of Progression From Moderate to Severe Tricuspid Regurgitation

被引:0
|
作者
Hudson, Olivia
Gastanadui, Maria Gabriela
Sotelo, Miguel
Wagner, Loren
Rogers, Chris
Efstathia, Andrikopoulou
机构
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A11784
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Tricuspid Annular Size and Prognosis of Moderate or Severe Tricuspid Regurgitation
    Bae, Han-Joon
    Kim, HyungSeop
    CIRCULATION, 2016, 134
  • [2] A streamlined, machine learning-derived approach to risk-stratification in patients with moderate and severe secondary tricuspid regurgitation
    Heitzinger, G.
    Spinka, G.
    Koschatko, S.
    Baumgartner, C.
    Dannenberg, V
    Halavina, K.
    Mascherbauer, K.
    Nitsche, C.
    C, Dona
    Koschutnik, M.
    Kammerlander, A.
    Winter, M.
    Strunk, G.
    Pavo, N.
    Kastl, S.
    Huelsmann, M.
    Rosenhek, R.
    Hengstenberg, C.
    Bartko, P.
    Goliasch, G.
    WIENER KLINISCHE WOCHENSCHRIFT, 2022, 134 (SUPPL 2) : 183 - 184
  • [3] MACHINE-LEARNING OF CLINICAL FEATURES PREDICTS MORTALITY IN MODERATE-SEVERE TRICUSPID REGURGITATION: A LARGE REGISTRY STUDY
    Deb, Brototo
    Scott, Christopher
    Pislaru, Sorin
    Nkomo, Vuyisile Tlhopane
    Kane, Garvan C.
    Alkhouli, Mohamad Adnan
    Saran, Nishant
    Crestanello, Juan A.
    Pellikka, Patricia A.
    Anand, Vidhu
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 2008 - 2008
  • [4] TRICUSPID REGURGITATION DISEASE PROGRESSION AND MACHINE LEARNING-BASED CLUSTER ANALYSIS OF GREATER THANMODERATE TRICUSPID REGURGITATION REVEALS DISTINCT POPULATION WITH DIFFERENT PHENOTYPES AND CLINICALOUTCOMES
    Padiyar, Shaefali
    Liu, Shizhen
    Sotelo, Miguel
    Rogers, Chris
    Wagner, Loren
    Yadav, Pradeep K.
    Rajagopal, Vivek
    Simone, Amy E.
    Rangarajan, Vibhav S.
    Flueckiger, Peter
    Thourani, Vinod H.
    Vannan, Mani A.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 1711 - 1711
  • [5] The synergy between tricuspid regurgitation and machine learning
    Chorin, Ehud
    Topilsky, Yan
    EUROPEAN HEART JOURNAL, 2023, 44 (21) : 1924 - 1926
  • [6] NATURAL COURSE OF MODERATE OR SEVERE ATRIAL FUNCTIONAL TRICUSPID REGURGITATION
    Alexandrino, Francisco B.
    Kucuk, Hilal Olgun
    Naser, Jwan A.
    Lara-Breitinger, Kyla
    Nkomo, Vuyisile Tlhopane
    Anand, Vidhu
    Thaden, Jeremy
    Pislaru, Sorin
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 946 - 946
  • [7] Determinants of progression from none and mild to moderate and severe native tricuspid regurgitation: results from a large-scale echocardiographic study
    Prihadi, E. A.
    Van der Bijl, P.
    Gursoy, E.
    Abou, R.
    Vollema, E. M.
    Hahn, R. T.
    Stone, G. W.
    Leon, M. B.
    Marsan, N. Ajmone
    Delgado, V.
    Bax, J. J.
    EUROPEAN HEART JOURNAL, 2017, 38 : 413 - 413
  • [8] Impact of pulmonary hypertension on outcome in patients with moderate or severe tricuspid regurgitation
    Saeed, Sahrai
    Smith, Jenna
    Grigoryan, Karine
    Urheim, Stig
    Chambers, John B.
    Rajani, Ronak
    OPEN HEART, 2019, 6 (02):
  • [9] UNSUPERVISED MACHINE LEARNING IN ECHOCARDIOGRAPHY OF FUNCTIONAL TRICUSPID REGURGITATION
    Zhao, Chenxu
    Chan, Ngai Fung
    Chan, Raymond Ngai Chiu
    Lee, Alex Pui-Wai
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 2152 - 2152
  • [10] Mitral valve surgery for functional mitral regurgitation: Should moderate to severe tricuspid regurgitation be treated? A propensity score analysis
    Wechsler, Andrew S.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2009, 137 (02): : 267 - 268