Strain Hardening of Highly Stretchable Elastomeric Composites Reinforced with Well-Defined Nanofiber Network of Bacterial Cellulose

被引:7
作者
Shimizu, Yoshihiko [1 ,2 ]
Sakakibara, Keita [1 ]
Tsujii, Yoshinobu [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
[2] Matsumoto Yushi Seiyaku Co Ltd, 2-1-3 Shibukawa Cho, Yao, Osaka 5810075, Japan
来源
JOURNAL OF FIBER SCIENCE AND TECHNOLOGY | 2018年 / 74卷 / 01期
关键词
POLYMER NANOCOMPOSITES; ELASTIC-MODULUS; MICROCRYSTALLINE CELLULOSE; MECHANICAL-PROPERTIES; CRYSTALLINE REGIONS; TENSILE PROPERTIES; STRENGTH; WHISKERS; POLYURETHANE; SUSPENSIONS;
D O I
10.2115/fiberst.2018-0003
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Highly stretchable poly(ethyl acrylate) (PEA) composites reinforced with a well-defined nanofiber network of bacterial cellulose (BC) were prepared via stepwise solvent exchange followed by in situ photo-initiated free radical polymerization. Despite the small volume fraction of BC (approximately 0.4 vol%), the BC/ PEA composite showed significant increases in Young's modulus (26 times larger than that of the neat PEA), tensile strength (35 times larger), and fracture energy (3.8 times larger), with its fracture strain (1520 %) almost the same as that of the neat PEA (1660 N. This composite was characterized by effective strain hardening. The changes in strain-hardening modulus and tensile strength were explained well by the rule of mixtures. Confocal laser scanning microscopic observations revealed the structure of the nanofibers embedded in the elastomeric matrix. The enhanced mechanical properties were discussed based on the rigidity and flexibility of the BC nanofibers and their entangled network and were ascribed to the well-defined BC nanofiber network produced by the bacterium.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 31 条
  • [1] Obtaining cellulose nanofibers with a uniform width of 15 nm from wood
    Abe, Kentaro
    Iwamoto, Shinichiro
    Yano, Hiroyuki
    [J]. BIOMACROMOLECULES, 2007, 8 (10) : 3276 - 3278
  • [2] A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates
    Capadona, Jeffrey R.
    Van Den Berg, Otto
    Capadona, Lynn A.
    Schroeter, Michael
    Rowan, Stuart J.
    Tyler, Dustin J.
    Weder, Christoph
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (12) : 765 - 769
  • [3] Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose
    Capadona, Jeffrey R.
    Shanmuganathan, Kadhiravan
    Trittschuh, Stephanie
    Seidel, Scott
    Rowan, Stuart J.
    Weder, Christoph
    [J]. BIOMACROMOLECULES, 2009, 10 (04) : 712 - 716
  • [4] POLYMER NANOCOMPOSITES REINFORCED BY CELLULOSE WHISKERS
    FAVIER, V
    CHANZY, H
    CAVAILLE, JY
    [J]. MACROMOLECULES, 1995, 28 (18) : 6365 - 6367
  • [5] Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose
    Gindl, W
    Keckes, J
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (15) : 2407 - 2413
  • [6] Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy
    Guhados, G
    Wan, WK
    Hutter, JL
    [J]. LANGMUIR, 2005, 21 (14) : 6642 - 6646
  • [7] Tensile behavior of nanocomposites from latex and cellulose whiskers
    Hajji, P
    Cavaille, JY
    Favier, V
    Gauthier, C
    Vigier, G
    [J]. POLYMER COMPOSITES, 1996, 17 (04) : 612 - 619
  • [8] Phase Separation Behavior in Aqueous Suspensions of Bacterial Cellulose Nanocrystals Prepared by Sulfuric Acid Treatment
    Hirai, Asako
    Inui, Osamu
    Horii, Fumitaka
    Tsuji, Masaki
    [J]. LANGMUIR, 2009, 25 (01) : 497 - 502
  • [9] An estimation of the Young's modulus of bacterial cellulose filaments
    Hsieh, Y. -C.
    Yano, H.
    Nogi, M.
    Eichhorn, S. J.
    [J]. CELLULOSE, 2008, 15 (04) : 507 - 513
  • [10] Bacterial cellulose - a masterpiece of nature's arts
    Iguchi, M
    Yamanaka, S
    Budhiono, A
    [J]. JOURNAL OF MATERIALS SCIENCE, 2000, 35 (02) : 261 - 270