A chaos embedded GSA-SVM hybrid system for classification

被引:40
作者
Li, Chaoshun [1 ,2 ]
An, Xueli [1 ]
Li, Ruhai [2 ]
机构
[1] China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100044, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Support vector machine; Gravitational search algorithm; Chaotic search; Parameter optimization; Feature selection; PARTICLE SWARM OPTIMIZATION; GRAVITATIONAL SEARCH ALGORITHM; SUPPORT VECTOR MACHINES; FEATURE-SELECTION; PARAMETERS IDENTIFICATION;
D O I
10.1007/s00521-014-1757-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parameter optimization and feature selection influence the classification accuracy of support vector machine (SVM) significantly. In order to improve classification accuracy of SVM, this paper hybridizes chaotic search and gravitational search algorithm (GSA) with SVM and presents a new chaos embedded GSA-SVM (CGSA-SVM) hybrid system. In this system, input feature subsets and the SVM parameters are optimized simultaneously, while GSA is used to optimize the parameters of SVM and chaotic search is embedded in the searching iterations of GSA to optimize the feature subsets. Fourteen UCI datasets are employed to calculate the classification accuracy rate in order to evaluate the developed CGSA-SVM approach. The developed approach is compared with grid search and some other hybrid systems such as GA-SVM, PSO-SVM and GSA-SVM. The results show that the proposed approach achieves high classification accuracy and efficiency compared with well-known similar classifier systems.
引用
收藏
页码:713 / 721
页数:9
相关论文
共 38 条
[1]  
[Anonymous], P INT JOINT C NEUR N
[2]   A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator [J].
Chatterjee, Arunava ;
Roy, Krishna ;
Chatterjee, Debashis .
ENERGY, 2014, 74 :707-718
[3]   Chaotic maps based on binary particle swarm optimization for feature selection [J].
Chuang, Li-Yeh ;
Yang, Cheng-Hong ;
Li, Jung-Chike .
APPLIED SOFT COMPUTING, 2011, 11 (01) :239-248
[4]   Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm [J].
Das, Swagatam ;
Abraham, Ajith ;
Konar, Amit .
PATTERN RECOGNITION LETTERS, 2008, 29 (05) :688-699
[5]   Least squares support vector machines with tuning based on chaotic differential evolution approach applied to the identification of a thermal process [J].
dos Santos, Glauber Souto ;
Justi Luvizotto, Luiz Guilherme ;
Mariani, Viviana Cocco ;
Coelho, Leandro dos Santos .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (05) :4805-4812
[6]   Evolutionary tuning of multiple SVM parameters [J].
Friedrichs, F ;
Igel, C .
NEUROCOMPUTING, 2005, 64 :107-117
[7]  
Gadat S, 2007, J MACH LEARN RES, V8, P509
[8]   Swarm intelligence and gravitational search algorithm for multi-objective optimization of synthesis gas production [J].
Ganesan, T. ;
Elamvazuthi, I. ;
Shaari, Ku Zilati Ku ;
Vasant, P. .
APPLIED ENERGY, 2013, 103 :368-374
[9]   A novel LS-SVMs hyper-parameter selection based on particle swarm optimization [J].
Guo, X. C. ;
Yang, J. H. ;
Wu, C. G. ;
Wang, C. Y. ;
Liang, Y. C. .
NEUROCOMPUTING, 2008, 71 (16-18) :3211-3215
[10]   Feature subset selection by gravitational search algorithm optimization [J].
Han, XiaoHong ;
Chang, XiaoMing ;
Quan, Long ;
Xiong, XiaoYan ;
Li, JingXia ;
Zhang, ZhaoXia ;
Liu, Yi .
INFORMATION SCIENCES, 2014, 281 :128-146