Simulating the density of organic species in the atmosphere of Titan with a coupled ion-neutral photochemical model

被引:152
作者
Vuitton, V. [1 ]
Yelle, R. V. [2 ]
Klippenstein, S. J. [3 ]
Horst, S. M. [4 ]
Lavvas, P. [5 ]
机构
[1] Univ Grenoble Alpes, Inst Planetol & Astrophys Grenoble, CNRS, F-38000 Grenoble, France
[2] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[3] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA
[4] Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA
[5] Univ Reims, CNRS, Grp Spectrometrie Mol & Atmospher, F-51687 Reims, France
关键词
Titan; Atmosphere; Ionospheres; Atmospheres; Chemistry; Photochemistry; Organic chemistry; ABSOLUTE CROSS-SECTIONS; H-ATOM YIELDS; PHOTOFRAGMENT TRANSLATIONAL SPECTROSCOPY; NITROGEN ISOTOPIC FRACTIONATION; THERMAL UNIMOLECULAR REACTIONS; MOLECULE CLUSTERING REACTIONS; VOYAGER INFRARED OBSERVATIONS; POTENTIAL-ENERGY SURFACES; LOW-TEMPERATURE REACTION; LAVAL NOZZLE APPARATUS;
D O I
10.1016/j.icarus.2018.06.013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a one-dimensional coupled ion-neutral photochemical kinetics and diffusion model to study the atmospheric composition of Titan in light of new theoretical kinetics calculations and scientific findings from the Cassini-Huygens mission. The model extends from the surface to the exobase. The atmospheric background, boundary conditions, vertical transport and aerosol opacity are all constrained by the Cassini-Huygens observations. The chemical network includes reactions between hydrocarbons, nitrogen and oxygen bearing species. It takes into account neutrals and both positive and negative ions with masses extending up to 116 and 74u, respectively. We incorporate high-resolution isotopic photoabsorption and photodissociation cross sections for N-2 as well as new photodissociation branching ratios for CH4 and C2H2. Ab initio transition state theory calculations are performed in order to estimate the rate coefficients and products for critical reactions. Main reactions of production and loss for neutrals and ions are quantitatively assessed and thoroughly discussed. The vertical distributions of neutrals and ions predicted by the model generally reproduce observational data, suggesting that for the small species most chemical processes in Titan's atmosphere and ionosphere are adequately described and understood; some differences are highlighted. Notable remaining issues include (i) the total positive ion density (essentially HCNH+) in the upper ionosphere, (ii) the low mass negative ion densities (CN-, C3N-/C4H-) in the upper atmosphere, and (iii) the minor oxygen-bearing species (CO2, H2O) density in the stratosphere. Pathways towards complex molecules and the impact of aerosols (UV shielding, atomic and molecular hydrogen budget, nitriles heterogeneous chemistry and condensation) are evaluated in the model, along with lifetimes and solar cycle variations. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:120 / 197
页数:78
相关论文
共 447 条
[1]  
Adams N., 1988, RATE COEFFICIENTS AS, P173
[2]   MEASUREMENTS OF THE DISSOCIATIVE RECOMBINATION COEFFICIENTS FOR SEVERAL POLYATOMIC ION SPECIES AT 300-K [J].
ADAMS, NG ;
SMITH, D .
CHEMICAL PHYSICS LETTERS, 1988, 144 (01) :11-14
[3]   LASER-INDUCED FLUORESCENCE AND VACUUM ULTRAVIOLET SPECTROSCOPIC STUDIES OF H-ATOM PRODUCTION IN THE DISSOCIATIVE RECOMBINATION OF SOME PROTONATED IONS [J].
ADAMS, NG ;
HERD, CR ;
GEOGHEGAN, M ;
SMITH, D ;
CANOSA, A ;
GOMET, JC ;
ROWE, BR ;
QUEFFELEC, JL ;
MORLAIS, M .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (07) :4852-4857
[4]   Laboratory chemistry relevant to understanding and modeling the ionosphere of Titan [J].
Adams, Nigel G. ;
Mathews, L. Dalila ;
Osborne, David, Jr. .
FARADAY DISCUSSIONS, 2010, 147 :323-335
[5]   New flowing afterglow technique for determining products of dissociative recombination: CH5+ and N2H+ [J].
Adams, Nigel G. ;
Molek, Chris D. ;
McLain, Jason L. .
SEVENTH INTERNATIONAL CONFERENCE ON DISSOCIATIVE RECOMBINATION: THEORY, EXPERIMENTS AND APPLICATIONS (DR2007), 2009, 192
[6]   Distribution of HCN in Titan's upper atmosphere from Cassini/VIMS observations at 3 μm [J].
Adriani, A. ;
Dinelli, B. M. ;
Lopez-Puertas, M. ;
Garcia-Comas, M. ;
Moriconi, M. L. ;
D'Aversa, E. ;
Funke, B. ;
Coradini, A. .
ICARUS, 2011, 214 (02) :584-595
[7]   On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere - a Cassini case study [J].
Agren, K. ;
Wahlund, J. -E. ;
Modolo, R. ;
Lummerzheim, D. ;
Galand, M. ;
Mueller-Wodarg, I. ;
Canu, P. ;
Kurth, W. S. ;
Cravens, T. E. ;
Yelle, R. V. ;
Waite, J. H., Jr. ;
Coates, A. J. ;
Lewis, G. R. ;
Young, D. T. ;
Bertucci, C. ;
Dougherty, M. K. .
ANNALES GEOPHYSICAE, 2007, 25 (11) :2359-2369
[8]   On the ionospheric structure of Titan [J].
Agren, K. ;
Wahlund, J. -E. ;
Garnier, P. ;
Modolo, R. ;
Cui, J. ;
Galand, M. ;
Mueller-Wodarg, I. .
PLANETARY AND SPACE SCIENCE, 2009, 57 (14-15) :1821-1827
[9]   The Photodissociation of HCN and HNC: Effects on the HNC/HCN Abundance Ratio in the Interstellar Medium [J].
Aguado, Alfredo ;
Roncero, Octavio ;
Zanchet, Alexandre ;
Agundez, Marcelino ;
Cernicharo, Jose .
ASTROPHYSICAL JOURNAL, 2017, 838 (01)
[10]   Titan airglow spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV analysis [J].
Ajello, Joseph M. ;
Stevens, Michael H. ;
Stewart, Ian ;
Larsen, Kristopher ;
Esposito, Larry ;
Colwell, Josh ;
McClintock, William ;
Holsclaw, Greg ;
Gustin, Jacques ;
Pryor, Wayne .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (24)