Rook numbers and the normal ordering problem

被引:44
作者
Varvak, A [1 ]
机构
[1] Soka Univ Amer, Aliso Viejo, CA 92656 USA
关键词
rook numbers; normal ordering problem; rook factorization theorem; differential operators; binomial coefficients; continued fractions;
D O I
10.1016/j.jcta.2005.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an element w in the Weyl algebra generated by D and U with relation DU = UD + 1, the normally ordered form is w = Sigma c(i),j U-i D-j. We demonstrate that the normal order coefficients c(i), j of a word w are rook numbers on a Ferrers board. We use this interpretation to give a new proof of the rook factorization theorem, which we use to provide an explicit formula for the coefficients ci, j. We calculate the Weyl binomial coefficients: normal order coefficients of the element (D + U)(n) in the Weyl algebra. We extend these results to the q-analogue of the Weyl algebra. We discuss further generalizations using i-rook numbers. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:292 / 307
页数:16
相关论文
共 15 条
[1]  
[Anonymous], J INTEGER SEQ
[2]   The general boson normal ordering problem [J].
Blasiak, P ;
Penson, KA ;
Solomon, AI .
PHYSICS LETTERS A, 2003, 309 (3-4) :198-205
[3]  
FLAJOLET P, 1980, DISCRETE MATH, V32, P125, DOI 10.1016/0012-365X(80)90050-3
[4]   Q-COUNTING ROOK CONFIGURATIONS AND A FORMULA OF FROBENIUS [J].
GARSIA, AM ;
REMMEL, JB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (02) :246-275
[5]   Generalized rook polynomials [J].
Goldman, J ;
Haglund, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) :509-530
[6]   ROOK THEORY .1. ROOK EQUIVALENCE OF FERRERS BOARDS [J].
GOLDMAN, JR ;
JOICHI, JT ;
WHITE, DE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :485-492
[7]  
Kac V., 2002, Quantum calculus
[8]   NORMAL ORDERING FORMULAS FOR SOME BOSON OPERATORS [J].
KATRIEL, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (17) :4171-4173
[9]   CONDITIONS FOR EXISTENCE OF CLOSED SOLUTIONS BY NORMAL ORDERING METHOD [J].
MARBURGER, JH .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (05) :829-+
[10]   ORDERING OF SOME BOSON OPERATOR-FUNCTIONS [J].
MIKHAILOV, VV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3817-3827