On a nonlinear 4-point ternary and non-interpolatory subdivision scheme eliminating the Gibbs phenomenon

被引:4
作者
Amat, S. [1 ]
Choutri, A. [2 ]
Ruiz, J. [3 ]
Zouaoui, S. [4 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] ENS Kouba, Dept Math, Algiers, Algeria
[3] Univ Alcala UAH, Dept Phys & Math, Alcala De Henares, Spain
[4] Ecole Preparatoire Sci & Tech Alger, Lab EDPNLHM ENS Kouba, Algiers, Algeria
关键词
Nonlinear ternary non-interpolatory subdivision scheme; Regularity; Nonlinear subdivision; Stability; Gibbs phenomenon; Signal processing; MEDIAN-INTERPOLATION; MULTIRESOLUTION; CURVES;
D O I
10.1016/j.amc.2017.08.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonlinear ternary 4-point non-interpolatory subdivision scheme is presented. It is based on a nonlinear perturbation of the 4-point subdivision scheme studied in [16]. The convergence of the scheme and the regularity of the limit function are analyzed. It is shown that the Gibbs phenomenon, that is classical in linear schemes, is eliminated. We also establish the stability of the subdivision scheme, that is not a consequence of its convergence due to its non-linearity. To the best of our knowledge, this is the first ternary non-interpolatory subdivision scheme that can be found in the literature. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 27 条
[1]   On the stability of the PPH nonlinear multiresolution [J].
Amat, S ;
Liandrat, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 18 (02) :198-206
[2]   ON A NONLINEAR SUBDIVISION SCHEME AVOIDING GIBBS OSCILLATIONS AND CONVERGING TOWARDS Cs FUNCTIONS WITH s > 1 [J].
Amat, S. ;
Dadourian, K. ;
Liandrat, J. .
MATHEMATICS OF COMPUTATION, 2011, 80 (274) :959-971
[3]   Analysis of a class of nonlinear subdivision schemes and associated multiresolution transforms [J].
Amat, S. ;
Dadourian, K. ;
Liandrat, J. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (03) :253-277
[4]  
Amat S, 2010, INT J NUMER ANAL MOD, V7, P261
[5]  
Amat S., 2006, CURVES SURFACES FITT, P1
[6]   Analysis of a new nonlinear subdivision scheme. Applications in image processing [J].
Amat, Sergio ;
Donat, Rosa ;
Liandrat, Jacques ;
Trillo, J. Carlos .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (02) :193-225
[7]  
[Anonymous], 1848, Cambridge and Dublin Mathematical Journal, V3, P198
[8]   An interpolating 4-point C2 ternary non-stationary subdivision scheme with tension control [J].
Beccari, C. ;
Casciola, G. ;
Romani, L. .
COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (04) :210-219
[9]   Quasilinear subdivision schemes with applications to ENO interpolation [J].
Cohen, A ;
Dyn, N ;
Matei, B .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 15 (02) :89-116
[10]   Normal multiresolution approximation of curves [J].
Daubechies, I ;
Runborg, O ;
Sweldens, W .
CONSTRUCTIVE APPROXIMATION, 2004, 20 (03) :399-463