Geometric models of the statistical theory of fragmentation

被引:0
作者
Virchenko, YP [1 ]
Sheremet, OI [1 ]
机构
[1] Ukrainian Acad Sci, Inst Monocrystals, UA-310108 Kharkov, Ukraine
关键词
Phase Space; Medium State; Stochastic Process; Partition Function; Discrete Time;
D O I
10.1023/A:1010583203043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose in approach to describing a medium fragmentation process based on studying the stochastic geometry of the medium states. This approach allows accounting for the interrelation of the produced fragments relative to their Positions and, in particular, allows taking the size of the fragmenting object into account. We use this approach to analyze a one-dimensional model - a stochastic process with discrete time and a phase space consisting of partitions into fragments of the real axis. We derive the driving equation for the partition function with respect to sizes and prove the existence of a limit distribution.
引用
收藏
页码:969 / 982
页数:14
相关论文
共 15 条
[1]  
[Anonymous], RANDOM SETS INTEGRAL
[2]  
Balescu R., 1975, Equilibrium and Nonequilibrium Statistical Mechanics
[3]  
Bellman R., 1960, Introduction to matrix analysis
[4]   MOLECULAR-WEIGHT CHANGES IN THE DEGRADATION OF LONG-CHAIN POLYMERS [J].
CHARLESBY, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 224 (1156) :120-128
[5]  
Filippov A., 1961, Theory Probab. Appl., V6, P275, DOI [10.1137/1106036, DOI 10.1137/1106036, DOI 10.1137/110603]
[6]  
Gantmakher F. R., 1959, APPL THEORY MATRICES
[7]  
Gikhman I., 1977, INTRO THEORY RANDOM
[8]  
Kolmogorov A. N., 1941, DOKL AKAD NAUK SSSR, V31, P99
[9]   SCALING AND MULTISCALING IN MODELS OF FRAGMENTATION [J].
KRAPIVSKY, PL ;
BENNAIM, E .
PHYSICAL REVIEW E, 1994, 50 (05) :3502-3507
[10]  
NUMMELIN E, 1984, GEN IRREDUCIBILE MAK