Electric-Field Assisted In Situ Hydrolysis of Bulk Metal-Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution

被引:67
作者
Tian, Jiayue [1 ,2 ,3 ]
Jiang, Feilong [1 ]
Yuan, Daqiang [1 ]
Zhang, Linjie [1 ]
Chen, Qihui [1 ]
Hong, Maochun [1 ,3 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Zhengzhou Univ Light Ind, Henan Prov Key Lab Surface & Interface Sci, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
metal oxyhydroxides; metal-organic frameworks (MOFs); morphology transformation; nanosheets; oxygen evolution reaction (OER); ELECTROCHEMICAL WATER-OXIDATION; GRAPHENE OXIDE; ELECTROCATALYSTS; REDUCTION; HYBRID; CATALYST; ALKALINE; ARRAYS; OER;
D O I
10.1002/anie.202004420
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Facile preparation of low-cost electrocatalysts for efficient oxygen evolution reaction (OER) remains a big challenge. Herein, a novel strategy for ultrafast (20 s) transformation of bulk metal-organic frameworks (MOFs) into ultrathin metal oxyhydroxide nanosheets for efficient OER has been developed. For two isomeric MOFs (FJI-H25Fe and FJI-H25FeCo), only the metastable FJI-H25FeCo bulk can immediately transform into FeCo-oxyhydroxides nanosheets through electric-field assisted hydrolysis. The potential evolution process from MOF bulk to FeCo-oxyhydroxides nanosheets has been investigated in detail. The as-made nanosheets exhibit excellent OER performances, showing an extremely low overpotential of 231 mV at the current density of 10 mA cm(-2), a relatively small Tafel slope of 42 mV dec(-1), and long-term durability of at least 30 h. This work not only provides a novel strategy for facile preparation of low-cost and efficient OER electrocatalysts, but also represents a new way for preparation of metal oxyhydroxides nanosheets with good crystallinity and morphology, and a fresh method for mild synthesis of nanosized derivatives from MOF materials.
引用
收藏
页码:13101 / 13108
页数:8
相关论文
共 96 条
[1]  
AIJAZ A, 2016, ANGEW CHEM, V128, P4155
[2]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[3]  
[Anonymous], ANGEW CHEM
[4]  
[Anonymous], 2015, ANGEW CHEM
[5]  
[Anonymous], 2018, ANGEW CHEM
[6]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[7]   Semisacrificial Template Growth of Self-Supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation [J].
Cao, Changsheng ;
Ma, Dong-Dong ;
Xu, Qiang ;
Wu, Xin-Tao ;
Zhu, Qi-Long .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (06)
[8]   One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi industrial water splitting at large-current-density [J].
Che, Qijun ;
Li, Qing ;
Tan, Ya ;
Chen, Xinhong ;
Xu, Xi ;
Chen, Yashi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 246 :337-348
[9]   Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction [J].
Chen, Rong ;
Hung, Sung-Fu ;
Zhou, Daojin ;
Gao, Jiajian ;
Yang, Cangjie ;
Tao, Huabing ;
Yang, Hong Bin ;
Zhang, Liping ;
Zhang, Lulu ;
Xiong, Qihua ;
Chen, Hao Ming ;
Liu, Bin .
ADVANCED MATERIALS, 2019, 31 (41)
[10]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122