Diffusive Shock Acceleration in N Dimensions

被引:4
|
作者
Lavi, Assaf [1 ]
Arad, Ofir [1 ]
Nagar, Yotam [1 ]
Keshet, Uri [1 ]
机构
[1] Ben Gurion Univ Negev, Phys Dept, POB 653, IL-84105 Beer Sheva, Israel
来源
ASTROPHYSICAL JOURNAL | 2020年 / 895卷 / 02期
关键词
High energy astrophysics; Shocks; Magnetic fields; Cosmic rays; 1ST-ORDER FERMI ACCELERATION; PARTICLE-ACCELERATION; ULTRARELATIVISTIC SHOCKS; RELATIVISTIC SHOCKS; CHARGED-PARTICLES; COSMIC-RAYS; DYNAMICS; SPECTRA;
D O I
10.3847/1538-4357/ab8d2b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Collisionless shocks are often studied in two spatial dimensions (2D) to gain insights into the 3D case. We analyze diffusive shock acceleration for an arbitrary number N I. of dimensions. For a nonrelativistic shock of compression ratio., the spectral index of the accelerated particles is sE = 1 + N (. - 1); this curiously yields, for any N, the familiar sE = 2 (i.e.,.equal energy per logarithmic particle energy bin) for a strong shock in a monatomic gas. A precise relation between sE and the anisotropy along an arbitrary relativistic shock is derived and is used to obtain an analytic expression for sE in the case of isotropic angular diffusion, affirming an analogous result in 3D. In particular, this approach yields sE = (1 + 13) 2. 2.30 in the ultrarelativistic shock limit for N.=.2, and sE (N. <yen>) = 2 for any strong shock. The angular eigenfunctions of the isotropic-diffusion transport equation reduce in 2D to elliptic cosine functions, providing a rigorous solution to the problem; the first function upstream already yields a remarkably accurate approximation. We show how these and additional results can be used to promote the study of shocks in 3D.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] DIFFUSIVE SHOCK ACCELERATION IN TEST-PARTICLE REGIME
    Kang, Hyesung
    Ryu, Dongsu
    ASTROPHYSICAL JOURNAL, 2010, 721 (01): : 886 - 892
  • [42] A more accurate numerical scheme for diffusive shock acceleration
    Achterberg, A.
    Schure, K. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 411 (04) : 2628 - 2636
  • [43] Diffusive shock acceleration: A method based on integral equation
    Malkov, M.A.
    Advances in Space Research, 2000, 26 (11) : 1855 - 1858
  • [44] A nonlinear model of diffusive particle acceleration at a planar shock
    Walter, Dominik
    Effenberger, Frederic
    Fichtner, Horst
    Litvinenko, Yuri
    PHYSICS OF PLASMAS, 2022, 29 (07)
  • [45] Combined Diffusive Shock and Shear Acceleration in Astrophysical Jets
    V. N. Zirakashvili
    V. S. Ptuskin
    S. I. Rogovaya
    Physics of Atomic Nuclei, 2023, 86 : 1232 - 1234
  • [46] Diffusive shock acceleration in unmodified relativistic, oblique shocks
    Ellison, DC
    Double, GP
    ASTROPARTICLE PHYSICS, 2004, 22 (3-4) : 323 - 338
  • [47] Nonlinear diffusive shock acceleration with magnetic field amplification
    Vladimirov, Andrey
    Ellison, Donald C.
    Bykov, Andrei
    ASTROPHYSICAL JOURNAL, 2006, 652 (02): : 1246 - 1258
  • [48] Diffusive shock acceleration to relativistic energies in the solar corona
    Sandroos, A.
    Vainio, R.
    Astronomy and Astrophysics, 2009, 507 (02):
  • [49] Diffusive shock acceleration in radiation-dominated environments
    Vannoni, G.
    Gabici, S.
    Aharonian, F. A.
    ASTRONOMY & ASTROPHYSICS, 2009, 497 (01) : 17 - 26
  • [50] Cosmic ray spectrum from diffusive shock acceleration
    Hyesung Kang
    Dongsu Ryu
    Astrophysics and Space Science, 2011, 336 : 263 - 268