Information geometry in a global setting

被引:0
作者
Mori, Atsuhide [1 ]
机构
[1] Osaka Dent Univ, Dept Math, 8-1 Kuzuha Hanazono, Hirakata, Osaka 5731121, Japan
关键词
Information geometry; contact structure; foliation; CONTACT STRUCTURES; CLASSIFICATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We begin a global study of information geometry. In this article, we describe the geometry of normal distributions by means of positive and negative contact structures associated to the suspension Anosov flows on Sol(3)-manifolds.
引用
收藏
页码:291 / 305
页数:15
相关论文
共 9 条
[1]   Existence and classification of overtwisted contact structures in all dimensions [J].
Borman, Matthew Strom ;
Eliashberg, Yakov ;
Murphy, Emmy .
ACTA MATHEMATICA, 2015, 215 (02) :281-361
[2]   SOME GLOBAL PROPERTIES OF CONTACT STRUCTURES [J].
GRAY, JW .
ANNALS OF MATHEMATICS, 1959, 69 (02) :421-450
[3]  
Hirzebruch F., 1973, L'enseignement Mathematique, V29, P183
[4]  
Honda K, 2000, J DIFFER GEOM, V55, P83
[5]  
Kasuya N, 2014, TOKYO J MATH, V37, P1
[6]   Weak and strong fillability of higher dimensional contact manifolds [J].
Massot, Patrick ;
Niederkrueger, Klaus ;
Wendl, Chris .
INVENTIONES MATHEMATICAE, 2013, 192 (02) :287-373
[7]   Anosov flows and non-Stein symplectic manifolds [J].
Mitsumatsu, Y .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (05) :1407-&
[8]  
[No title captured]
[9]  
[No title captured]