Pump depletion reduction technique for extended-range distributed Brillouin fiber sensors

被引:1
|
作者
Bernini, R. [1 ]
Minardo, A. [2 ]
Zeni, L. [2 ]
机构
[1] CNR, Ist Rilevamento Elettromagneitco Ambiente, Via Diocleziano 328, I-80124 Naples, Italy
[2] Univ Naples 2, Dept Informat Engn, I-81031 Aversa, Italy
来源
OPTICAL SENSORS 2009 | 2009年 / 7356卷
关键词
Optical fiber sensors; stimulated Brillouin scattering; HIGH-RESOLUTION; TEMPERATURE;
D O I
10.1117/12.820695
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We present a numerical and experimental analysis of a technical solution, capable of alleviating the problem of pump depletion in a long-range Brillouin distributed fiber sensor. This solution takes advantage of the presence of two sidebands in the probe wave to generate a dual gain-loss Brillouin interaction, giving rise to reduced pump depletion. Experimental results, carried out by using both a Brillouin optical frequency-domain analysis (BOFDA) configuration and a Brillouin optical time-domain analysis (BOTDA) configuration, permitted to evaluate the advantages and limitations of the gain-loss technique. An extensive experimental and numerical analysis has been carried out, in order to understand the differences on the effectiveness of the technique, between BOTDA and BOFDA set-ups.
引用
收藏
页数:8
相关论文
共 46 条
  • [31] Improvement of response speed and precision of distributed Brillouin optical fiber sensors using neural networks
    Huang, Qiang
    Shi, Haotian
    Huang, Chukun
    Sun, JunQiang
    OPTICS AND LASER TECHNOLOGY, 2023, 167
  • [32] System optimization of a long-range Brillouin-loss-based distributed fiber sensor
    Dong, Yongkang
    Chen, Liang
    Bao, Xiaoyi
    APPLIED OPTICS, 2010, 49 (27) : 5020 - 5025
  • [33] Deep learning method for detection of structural microcracks by brillouin scattering based distributed optical fiber sensors
    Song, Qingsong
    Zhang, Chao
    Tang, Guangwu
    Ansari, Farhad
    SMART MATERIALS AND STRUCTURES, 2020, 29 (07)
  • [34] Fiber-optic guided-acoustic-wave Brillouin scattering observed with pump-probe technique
    Hayashi, Neisei
    Lee, Heeyoung
    Mizuno, Yosuke
    Nakamura, Kentaro
    2016 21ST OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC) HELD JOINTLY WITH 2016 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING (PS), 2016,
  • [35] Pump-Power-Independent Double Slope-Assisted Distributed and Fast Brillouin Fiber-Optic Sensor
    Motil, Avi
    Danon, Orr
    Peled, Yair
    Tur, Moshe
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (08) : 797 - 800
  • [36] Multiplexing technique for quasi-distributed sensors arrays in polymer optical fiber intensity variation-based sensors
    Leal-Junior, Arnaldo G.
    Diaz, Camilo R.
    Marques, Carlos
    Pontes, Maria Jose
    Frizera, Anselmo
    OPTICS AND LASER TECHNOLOGY, 2019, 111 : 81 - 88
  • [37] Brillouin distributed sensor over a 200 km fiber-loop using a dual-pump configuration and colour coding
    Le Floch, S.
    Sauser, F.
    Llera, M.
    Rochat, E.
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [38] Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding
    Taki, M.
    Signorini, A.
    Oton, C. J.
    Nannipieri, T.
    Di Pasquale, F.
    OPTICS LETTERS, 2013, 38 (20) : 4162 - 4165
  • [39] Analysis of Brillouin dynamic grating localized by intensity-modulated correlation-domain technique for distributed fiber sensing
    Okawa, Youhei
    Yamashita, Rodrigo Kendy
    Kishi, Masato
    Hotate, Kazuo
    OPTICS EXPRESS, 2020, 28 (05) : 6981 - 6994
  • [40] Analytical study of nonlinear phase shift through stimulated Brillouin scattering in single mode fiber with the pump power recycling technique
    Al-Asadi, H. A.
    Bakar, A. A. A.
    Adikan, F. R. Mahamd
    Mahdi, M. A.
    JOURNAL OF OPTICS, 2011, 13 (10)